S参数与T参数的定义

  1. S参数的定义
    在微波系统中,由于确定和测量电压、电流非常困难,代之以测量入射、反射及传输波,建立在入射波、反射波关系基础上的网络参数就是散射参数。散射参数可以直接用网络分析仪测量得到,而网络散射矩阵反映了端口的入射电压波和反射电压波的关系。
    在这里插入图片描述

归一化反射波 b 1 b_1 b1 b 2 b_2 b2可以用归一化入射波 a 1 a_1 a1 a 2 a_2 a2表示:
b 1 = S 11 a 1 + S 12 a 2 b 2 = S 21 a 1 + S 22 a 2 b_1 = S_{11} a_1 +S_{12} a2 \\ b_2 = S_{21} a_1 + S_{22} a_2 b1=S11a1+S12a2b2=S21a1+S22a2
写成矩阵形式
[ b 1 b 2 ] = [ S 11 S 12 S 21 S 22 ] [ a 1 a 2 ] \left[ \begin{matrix} b_1 \\ b_2 \end{matrix} \right] = \left[ \begin{matrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{matrix} \right] \left[ \begin{matrix} a_1 \\ a_2 \end{matrix} \right] [b1b2]=[S11S21S12S22][a1a2]
对复数源阻抗 Z s Z_s Zs和负载阻抗 Z L Z_L ZL给定情况下,入射波 a 1 a_1 a1 a 2 a_2 a2和反射波 b 1 b_1 b1 b 2 b_2 b2
a 1 = V 1 + Z s I 1 2   R e Z s a 2 = V 2 + Z L I 2 2   R e Z L b 1 = V 1 − Z s ∗ I 1 2   R e Z s b 2 = V 2 − Z L ∗ I 2 2   R e Z L a_1 = \frac{V_1 + Z_s I_1}{2\ \sqrt[]{Re Z_s}} \\ a_2 = \frac{V_2 + Z_L I_2}{2\ \sqrt[]{Re Z_L}} \\ b_1 = \frac{V_1 - Z_s^* I_1}{2\ \sqrt[]{Re Z_s}} \\ b_2 = \frac{V_2 - Z_L^* I_2}{2\ \sqrt[]{Re Z_L}} a1=2 ReZs V1+ZsI1a2=2 ReZL V2+ZLI2b1=2 ReZs V1ZsI1b2=2 ReZL V2ZLI2
S11和S21是输出口理想匹配情况下的输入口反射系数及传输系数
S 11 = b 1 a 1 ∣ a 2 = 0 S 21 = b 2 a 1 ∣ a 2 = 0 S_{11} = \frac{b_1}{a_1} \Big| _{a_2 = 0} \\ S_{21} = \frac{b_2}{a_1} \Big| _{a_2 = 0} S11=a1b1 a2=0S21=a1b2 a2=0
S12和S22是输入口理想匹配情况下的输出口反射系数及传输系数
S 12 = b 1 a 2 ∣ a 1 = 0 S 22 = b 2 a 2 ∣ a 1 = 0 S_{12} = \frac{b_1}{a_2} \Big|_{a_1 = 0} \\ S_{22} = \frac{b_2}{a_2} \Big|_{a_1 = 0} S12=a2b1 a1=0S22=a2b2 a1=0
2. T参数的定义
还有一种传输散射T矩阵
[ b 1 a 1 ] = [ T 11 T 12 T 21 T 22 ] [ a 2 b 2 ] \left[ \begin{matrix} b_1 \\ a_1 \end{matrix} \right] = \left[ \begin{matrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{matrix} \right] \left[ \begin{matrix} a_2 \\ b_2 \end{matrix} \right] [b1a1]=[T11T21T12T22][a2b2]

  1. T参数与S参数的关系

    [ S 11 S 12 S 21 S 22 ] = 1 T 22 [ T 12 T 11 T 22 − T 12 T 21 1 − T 21 ] \left[ \begin{matrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{matrix} \right] = \frac{1}{T_{22}} \left[ \begin{matrix} T_{12} & T_{11}T_{22} - T_{12}T_{21} \\ 1 & -T_{21} \end{matrix} \right] [S11S21S12S22]=T221[T121T11T22T12T21T21]

    [ T 11 T 12 T 21 T 22 ] = 1 S 21 [ S 12 S 21 − S 11 S 22 S 11 − S 22 1 ] \left[ \begin{matrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{matrix} \right] = \frac{1}{S_{21}} \left[ \begin{matrix} S_{12}S_{21} - S_{11}S_{22} & S_{11} \\ -S{22} & 1\end{matrix} \right] [T11T21T12T22]=S211[S12S21S11S22S22S111]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值