- S参数的定义
在微波系统中,由于确定和测量电压、电流非常困难,代之以测量入射、反射及传输波,建立在入射波、反射波关系基础上的网络参数就是散射参数。散射参数可以直接用网络分析仪测量得到,而网络散射矩阵反映了端口的入射电压波和反射电压波的关系。
归一化反射波
b
1
b_1
b1和
b
2
b_2
b2可以用归一化入射波
a
1
a_1
a1和
a
2
a_2
a2表示:
b
1
=
S
11
a
1
+
S
12
a
2
b
2
=
S
21
a
1
+
S
22
a
2
b_1 = S_{11} a_1 +S_{12} a2 \\ b_2 = S_{21} a_1 + S_{22} a_2
b1=S11a1+S12a2b2=S21a1+S22a2
写成矩阵形式
[
b
1
b
2
]
=
[
S
11
S
12
S
21
S
22
]
[
a
1
a
2
]
\left[ \begin{matrix} b_1 \\ b_2 \end{matrix} \right] = \left[ \begin{matrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{matrix} \right] \left[ \begin{matrix} a_1 \\ a_2 \end{matrix} \right]
[b1b2]=[S11S21S12S22][a1a2]
对复数源阻抗
Z
s
Z_s
Zs和负载阻抗
Z
L
Z_L
ZL给定情况下,入射波
a
1
a_1
a1、
a
2
a_2
a2和反射波
b
1
b_1
b1、
b
2
b_2
b2为
a
1
=
V
1
+
Z
s
I
1
2
R
e
Z
s
a
2
=
V
2
+
Z
L
I
2
2
R
e
Z
L
b
1
=
V
1
−
Z
s
∗
I
1
2
R
e
Z
s
b
2
=
V
2
−
Z
L
∗
I
2
2
R
e
Z
L
a_1 = \frac{V_1 + Z_s I_1}{2\ \sqrt[]{Re Z_s}} \\ a_2 = \frac{V_2 + Z_L I_2}{2\ \sqrt[]{Re Z_L}} \\ b_1 = \frac{V_1 - Z_s^* I_1}{2\ \sqrt[]{Re Z_s}} \\ b_2 = \frac{V_2 - Z_L^* I_2}{2\ \sqrt[]{Re Z_L}}
a1=2 ReZsV1+ZsI1a2=2 ReZLV2+ZLI2b1=2 ReZsV1−Zs∗I1b2=2 ReZLV2−ZL∗I2
S11和S21是输出口理想匹配情况下的输入口反射系数及传输系数
S
11
=
b
1
a
1
∣
a
2
=
0
S
21
=
b
2
a
1
∣
a
2
=
0
S_{11} = \frac{b_1}{a_1} \Big| _{a_2 = 0} \\ S_{21} = \frac{b_2}{a_1} \Big| _{a_2 = 0}
S11=a1b1
a2=0S21=a1b2
a2=0
S12和S22是输入口理想匹配情况下的输出口反射系数及传输系数
S
12
=
b
1
a
2
∣
a
1
=
0
S
22
=
b
2
a
2
∣
a
1
=
0
S_{12} = \frac{b_1}{a_2} \Big|_{a_1 = 0} \\ S_{22} = \frac{b_2}{a_2} \Big|_{a_1 = 0}
S12=a2b1
a1=0S22=a2b2
a1=0
2. T参数的定义
还有一种传输散射T矩阵
[
b
1
a
1
]
=
[
T
11
T
12
T
21
T
22
]
[
a
2
b
2
]
\left[ \begin{matrix} b_1 \\ a_1 \end{matrix} \right] = \left[ \begin{matrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{matrix} \right] \left[ \begin{matrix} a_2 \\ b_2 \end{matrix} \right]
[b1a1]=[T11T21T12T22][a2b2]
-
T参数与S参数的关系
[ S 11 S 12 S 21 S 22 ] = 1 T 22 [ T 12 T 11 T 22 − T 12 T 21 1 − T 21 ] \left[ \begin{matrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{matrix} \right] = \frac{1}{T_{22}} \left[ \begin{matrix} T_{12} & T_{11}T_{22} - T_{12}T_{21} \\ 1 & -T_{21} \end{matrix} \right] [S11S21S12S22]=T221[T121T11T22−T12T21−T21]
[ T 11 T 12 T 21 T 22 ] = 1 S 21 [ S 12 S 21 − S 11 S 22 S 11 − S 22 1 ] \left[ \begin{matrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{matrix} \right] = \frac{1}{S_{21}} \left[ \begin{matrix} S_{12}S_{21} - S_{11}S_{22} & S_{11} \\ -S{22} & 1\end{matrix} \right] [T11T21T12T22]=S211[S12S21−S11S22−S22S111]