【刷题】剪绳子 公式推导

题目:给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1,m<=n),每段绳子的长度记为k[1],…,k[m]。请问k[1]x…xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

示例:
输入:8
输出:18

思路:和为定值时,当各个数大致相等时,得到乘积的最大值。(类似的题目,给定三角形或矩形周长,求何时面积最大)假设一共 m m m 个数,每个数为 x = n / m x = n / m x=n/m ,那么乘积为: y = x n / x y=x^{n/x} y=xn/x,对 x x x求导(推导过程见最后)得到当 x < e x<e x<e时,y随x增大而增大,当 x > e x>e x>e时,y随x增大而减小,x只能是整数,并且 y ( 2 ) < y ( 3 ) y(2)<y(3) y(2)<y(3),因此尽量拆成3。当num<=3时,分别考虑,当num>3时,共有3种情况:÷3余数为0,÷3余数为1,÷3余数为2。余数为0,直接全拆成3即可;余数为1,31<22,因此留一个3用于拆成22;余数为2,32>1*4,因此2留下即可。

code:

# -*- coding:utf-8 -*-
class Solution:
    def cutRope(self, number):
        # write code here
        if number==0:
            return 0
        elif number==1:
            return 0
        elif number==2:
            return 1
        elif number==3:
            return 2
        elif number%3 == 0:
            return 3**(number//3)
        elif number%3 == 1:
            return 4*3**(number//3-1)
        elif number%3 == 2:
            return 2*3**(number//3)
        else:
            return 0

参考公式:
y = f ( x ) g ( x ) , ln ⁡ y = g ( x ) ln ⁡ f ( x ) y=f(x)^{g(x)}, \ln y=g(x) \ln f(x) y=f(x)g(x),lny=g(x)lnf(x)
1 y ⋅ y ′ = g ′ ( x ) ln ⁡ f ( x ) + g ( x ) f ′ ( x ) f ( x ) \frac{1}{y} \cdot y^{\prime}=g^{\prime}(x) \ln f(x)+g(x) \frac{f^{\prime}(x)}{f(x)} y1y=g(x)lnf(x)+g(x)f(x)f(x)
y ′ = f ( x ) g ( x ) g ′ ( x ) ln ⁡ f ( x ) + f ( x ) g ( x ) g ( x ) f ′ ( x ) f ( x ) y^{\prime}=f(x)^{g(x)} g^{\prime}(x) \ln f(x)+f(x)^{g(x)} g(x) \frac{f^{\prime}(x)}{f(x)} y=f(x)g(x)g(x)lnf(x)+f(x)g(x)g(x)f(x)f(x)

[ f ( x ) ⋅ g ( x ) ] ′ = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) [f(x) \cdot g(x)]^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x) [f(x)g(x)]=f(x)g(x)+f(x)g(x)

推导过程:
y = x n x y=x^{\frac{n}{x}} y=xxn
l n y = n x ⋅ l n x lny = \frac{n}{x}\cdot lnx lny=xnlnx
d   l n y d   y ⋅ d   y d   x = − n x 2 ⋅ l n x + n x ⋅ 1 x \frac{d\ lny}{d\ y} \cdot \frac{d\ y}{d\ x} =- \frac{n}{x^2}\cdot lnx+\frac{n}{x} \cdot \frac{1}{x} d yd lnyd xd y=x2nlnx+xnx1
1 y ⋅ d   y d   x = − n x 2 ⋅ l n x + n x ⋅ 1 x \frac{1}{y} \cdot \frac{d\ y}{d\ x} =- \frac{n}{x^2}\cdot lnx+\frac{n}{x} \cdot \frac{1}{x} y1d xd y=x2nlnx+xnx1
d   y d   x = ( − n x 2 ⋅ l n x + n x 1 x ) ⋅ y = ( − n x 2 ⋅ l n x + n x ⋅ 1 x ) ⋅ x n x \frac{d\ y}{d\ x} =(- \frac{n}{x^2}\cdot lnx+\frac{n}{x}\frac{1}{x})\cdot y=(- \frac{n}{x^2}\cdot lnx+\frac{n}{x}\cdot \frac{1}{x})\cdot x^{\frac{n}{x}} d xd y=(x2nlnx+xnx1)y=(x2nlnx+xnx1)xxn
= ( n x 2 ⋅ ( 1 − l n x ) ) ⋅ x n x =( \frac{n}{x^2}\cdot (1-lnx))\cdot x^{\frac{n}{x}} =(x2n(1lnx))xxn
当x>e时单调递减,x<e时单调递增。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
在C++中,绳子问题是一个经典的动态规划问题问题描述为:给定一根长度为n的绳子,要求将其成m段(m>1),每段绳子的长度记为k, k, ..., k[m-1],请问如何绳子使得各段绳子的乘积最大? 解决这个问题的一种常见方法是使用动态规划。具体步骤如下: 1. 定义一个数组dp,其中dp[i]表示长度为i的绳子成若干段后各段绳子长度乘积的最大值。 2. 初始化dp数组,dp和dp都为0,因为长度为0和1的绳子无法断。 3. 从长度为2开始遍历到n,对于每个长度i,计算dp[i]的值。 - 遍历j从1到i-1,表示第一段绳子的长度,可以取值范围为1到i-1。 - 计算第一段绳子长度为j时,剩余绳子的长度为i-j。 - 计算当前情况下的乘积,即j * dp[i-j]。 - 更新dp[i]的值为所有情况中乘积最大的值。 4. 最终dp[n]即为所求的结果,表示长度为n的绳子成若干段后各段绳子长度乘积的最大值。 下面是绳子问题的C++代码示例: ```cpp #include <iostream> #include <vector> using namespace std; int cutRope(int n) { if (n <= 1) { return 0; } vector<int> dp(n + 1, 0); for (int i = 2; i <= n; i++) { for (int j = 1; j < i; j++) { dp[i] = max(dp[i], max(j * (i - j), j * dp[i - j])); } } return dp[n]; } int main() { int n = 8; int result = cutRope(n); cout << "将长度为" << n << "的绳子成若干段后各段绳子长度乘积的最大值为:" << result << endl; return 0; } ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值