2.Network in Networks 论文总结

目的:

改进CNN,可以学习到更加抽象和有效的非线性特征

常规卷积层: conv→relu

  • conv: conv_out=∑(x·w)
  • relu: y=max(0, conv_out)

maxout: several conv(full)→max

  • maxout:一种激活函数形式
  • several conv (full): conv_out1 = x·w_1, conv_out2 = x·w_2, …
  • max: y = max(conv_out1, conv_out2, …)
  • 线性变化+Max操作可以拟合任意的的凸函数

NIN: serveral conv(full)→relu→conv(1x1)→relu

  • several conv (full): conv_out1 = x·w_1, conv_out2 = x·w_2, …
  • relu: relu_out1 = max(0, conv_out1), relu_out2 = max(0, conv_out2), …
  • conv(1x1): conv_1x1_out = [relu_out1, relu_out2, …]·w_1x1
  • relu: y = max(0, conv_1x1_out)
  • NIN想表明:不仅能够拟合任何凸函数,而且能够拟合任何函数,因为它本质上可以说是一个小型的全连接神经网络

1.MLP Convolution Layers

  • mlpconv网络层替代传统的convolution层

  • mlpconv网络层:卷积 + 传统的mlp(多层感知器)

  • 在跨通道(cross channel,cross feature map)情况下,mlpconv 等价于 卷积层 + 1×1卷积层

  • 1×1卷积层 实现多个feature map的线性组合,实现跨通道的信息整合

CNN高层特征是低层特征通过某种运算的组合
在每个局部感受野中进行更加复杂的运算(包含一个微型的多层网络),提高非线性
同一层中,不同特征层之间(每一层之间的特征提取又加上了一个小的神经网络。)

2.Global Average Pooling

替代全连接层,减少参数
feature map数量等于category数量

  • 传统:卷积出现在底层网络,最后一个卷积层的特征图通过量化送到全连接,接一个softmax逻辑回归分类层
    (特征提取+传统网络)
  • 优化:卷积之后,对每个特征图一整张图片进行全局均值池化,这样每张特征图都可以得到一个输出。
    (每张特征图相当于一个输出特征,表示输出类的特征。)
  • 特点:强化特征图与类别的关系,没有参数需要进行优化

3.补充

  • 仿射特征图(affine feature maps):是直接由线性卷积得到的特征图,没有通过激活函数进行非线性映射。

4.重点知识

  • 1×1卷积核:
    (1)一个通道:同一个w去乘以原图像上的每一个像素点,相当于做了一个scaling
    (2)多个通道:实现跨通道的交互和信息整合
    (卷积操作本身就可以做到各个通道的重新聚合的作用)
    (3)卷积时:11* 11* 3* 96(11*11的卷积kernel,输出map 96个)对于一个patch输出96个点,是输出feature map同一个像素的96个channel,但是现在多加了一层MLP,把这96个点做了一个全连接,又输出了96个点——很巧妙,这个新加的MLP层就等价于一个1 * 1 的卷积层
    (4)1 * 1的卷积可以看作是 对 每个feature map 对应的 相关 patch 做全连接(加权求和)
  • the author’s goal was to generate a deeper network without simply stacking more layers.
    It replaces few filters with a smaller perceptron layer with mixture of 1x1 and 3x3 convolutions. In a way,
    it can be seen as “going wide” instead of “deep”,
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值