NLTK也提供了决策树分类器(DecisionTreeClassifier)。不过它的用法与sklearn中的不同,而且提供的例子是文本分类的例子,收敛很慢。本文根据sklearn中的鸢尾花例子修改。
因为NLTK的决策树分类器与sklearn的输入数据格式不同,需要修改。鸢尾花是有4个参数的,因此需要用iris_features将4个参数组合为一个参数:
def iris_features(iris,result):
features = {
}
for item in iris:
features[item]=result
return features```
格式如下:
```python
({
4.9: 2.0, 2.5: 2.0, 4.5: 2.0, 1.7:

本文介绍了如何利用NLTK库在鸢尾花数据集上构建决策树分类器。由于NLTK的数据格式要求,需要将鸢尾花的四个特征组合成一个字典参数,并结合其类别进行训练。最终模型达到约97.8%的准确率。
最低0.47元/天 解锁文章
1005

被折叠的 条评论
为什么被折叠?



