NLTK 实现决策树分类器DecisionTreeClassifier

本文介绍了如何利用NLTK库在鸢尾花数据集上构建决策树分类器。由于NLTK的数据格式要求,需要将鸢尾花的四个特征组合成一个字典参数,并结合其类别进行训练。最终模型达到约97.8%的准确率。

NLTK也提供了决策树分类器(DecisionTreeClassifier)。不过它的用法与sklearn中的不同,而且提供的例子是文本分类的例子,收敛很慢。本文根据sklearn中的鸢尾花例子修改。
因为NLTK的决策树分类器与sklearn的输入数据格式不同,需要修改。鸢尾花是有4个参数的,因此需要用iris_features将4个参数组合为一个参数:

def iris_features(iris,result):
    features = {
   
   }
    for item in iris:
        features[item]=result
    return features```
格式如下:

```python
({
   
   4.9: 2.0, 2.5: 2.0, 4.5: 2.0, 1.7: 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值