选择了猫狗分类这个不是很困难的例子来做CNN的demo,数据可从kaggle下载:
kaggle Dogs vs Cats
猫狗数据各有12500张训练数据即25000张,每张图片前三个字母为cat或者dog,可以此作为分类。测试共有12500张,测试数据没有进行分类。
先对数据进行预处理操作:
import os
import shutil
file_names = os.listdir('./train/')
train_cats = filter(lambda x:x[:3]=='cat',file_names)
train_dogs = filter(lambda x:x[:3]=='dog',file_names)
def createDir(path):
if not os.path.exists(path):
try:
os.makedirs(path)
except:
print("创建文件夹失败")
exit(1)
createDir('./train_data')
createDir('./train_data/cats')
createDir('./train_data/dogs')
cats = list(train_cats)
dogs = list(train_dogs)
for cat in cats[:5000]:
shutil.move('./train/'+cat,'./train_data/cats/')
print(' 猫猫操作成功!')
for dog in dogs[:

这篇博客通过Keras构建了一个CNN模型,用于猫狗图像的分类。首先,从Kaggle下载数据并进行预处理。然后,创建并训练了一个CNN模型,最终在训练集和测试集上达到了70%的准确率。作者还进行了参数调整,以提高模型性能,并展示了如何使用模型进行预测。
最低0.47元/天 解锁文章
1475

被折叠的 条评论
为什么被折叠?



