基于Keras的CNN模型做猫狗分类

这篇博客通过Keras构建了一个CNN模型,用于猫狗图像的分类。首先,从Kaggle下载数据并进行预处理。然后,创建并训练了一个CNN模型,最终在训练集和测试集上达到了70%的准确率。作者还进行了参数调整,以提高模型性能,并展示了如何使用模型进行预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

选择了猫狗分类这个不是很困难的例子来做CNN的demo,数据可从kaggle下载:
kaggle Dogs vs Cats

猫狗数据各有12500张训练数据即25000张,每张图片前三个字母为cat或者dog,可以此作为分类。测试共有12500张,测试数据没有进行分类。

先对数据进行预处理操作:

import os
import shutil

file_names = os.listdir('./train/')
train_cats = filter(lambda x:x[:3]=='cat',file_names)
train_dogs = filter(lambda x:x[:3]=='dog',file_names)
def createDir(path):
    if not os.path.exists(path):
        try:
            os.makedirs(path)
        except:
            print("创建文件夹失败")
            exit(1)
createDir('./train_data')
createDir('./train_data/cats')
createDir('./train_data/dogs')
cats = list(train_cats)
dogs = list(train_dogs)
for cat in cats[:5000]:
    shutil.move('./train/'+cat,'./train_data/cats/')
print(' 猫猫操作成功!')
for dog in dogs[:
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值