热传导偏微分方程的求解

本文详细介绍了如何通过分离变量法解决热传导问题,具体涉及正负常数情况下的偏微分方程解法,并结合边界条件和初值条件,推导出解的形式,为热传导问题的数值求解提供了理论基础。
摘要由CSDN通过智能技术生成

heat-flow problem solution ∂ T ‾ ∂ t ‾ = ∂ 2 T ‾ ∂ x ‾ 2 \frac{\partial \overline{T}}{\partial\overline{t}}=\frac{\partial^2 \overline{T}}{\partial\overline{x}^2} tT=x22T

By seperation law, assume
u ( x , t ) = X ( t ) T ( t ) u n ( x , t ) = X n ( t ) T n ( t ) u = ∑ n = 1 ∞ u i ( x , t ) = ∑ n = 1 ∞ a i X i ( t ) T i ( t ) ∂ u ∂ t = X d T d t , ∂ 2 u ∂ X 2 = T d 2 X d x , ∂ u ∂ t = ∂ 2 u ∂ x 2 X d T d t = T d 2 X d x u(x,t)=X(t)T(t) \\ u_n(x,t)=X_n(t)T_n(t)\\ u=\sum_{n=1}^{\infin}u_i(x,t)=\sum_{n=1}^{\infin}a_iX_i(t)T_i(t)\\ \frac{\partial u}{\partial t}=X\frac{dT}{dt}, \frac{\partial ^2u}{\partial X^2}=T\frac{d^2X}{dx}, \frac{\partial u}{\partial t}=\frac{\partial^2 u}{\partial x^2}\\ X\frac{dT}{dt}=T\frac{d^2X}{dx} u(x,t)=X(t)T(t)un(x,t)=Xn(t)Tn(t)u=n=1ui(x,t)=n=1aiXi(t)Ti(t)tu=XdtdT,X22u=Tdxd2X,tu=x22uXdtdT=Tdxd

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值