向量场的散度和旋度_偏微分方程预备知识-梯度,散度,旋度

本文详细介绍了向量场的梯度、散度和旋度,从概念到物理意义,再到计算方法和性质。梯度表示空间中点的陡峭程度,散度描述向量场的发散程度,旋度则涉及向量场的旋转效应。通过对这些基本概念的理解,有助于深入掌握偏微分方程的相关知识。
摘要由CSDN通过智能技术生成

本章内容:

介绍梯度,散度,旋度的含义

讲梯度,散度,旋度之前我们先说点其他的

一、场

f226e63808cd2b7f9c424a9486e6ec41.png

我们首先选定一个区域进行分析,这个区域可以是一个空间,也可以是一个实际存在的物体。比如上图我们选了一个圆柱,那么在这区域中任意一点,我们都可以用一个物理量去描述它的某一状态,比如我可以用温度描述这一点的温度状态,那么同样,其他所有点也都有一个温度与之对应。

回到我们本来的目的,对整个区域进行分析,那这个区域是由很多点构成的,描述区域所有点的某一状态我们就称之为。比如说区域中每一点温度的状态,那么我们就可以说这个区域的温度场是什么。所以说,场其实不是一种空间的概念,而是整体的物理量表示,不同场就是不同物理量表示,而空间(区域)是固定的。

场可以分为三种:数量场,比如温度场,密度场;向量场,比如重力场,速度场;张量场:应力场,变形速率场。

328a8cf31b9736f690c22e469cbe4a01.png
速度场,表示该区域速度分布。箭头代表方向,长度代表大小

由于我们常常是用函数来表现出一点的状态,这个函数可以是标量,也可以是向量,比如

那么我们其实可以把场看作是定义在某空间的函数

接下来

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值