1.CNN模型中池化层的作用是什么?
常用的有mean pooling和max pooling,简言之,取区域平均或最大。作用是保留主要的特征,同时减少下一层的参数和计算量,防止过拟合;也可以保持translation(平移)、rotation(旋转)、scale(尺度)不变性。
2.Mean Pooling和Max Pooling是如何反向传递梯度的?
mean pooling的反向传播的过程也就是把某个元素的梯度等分为n份分配给前一层,这样就保证池化前后的梯度之和保持不变。max pooling的反向传播也就是把梯度直接传给前一层某一个像素,而其他像素不接受梯度,也就是为0。所以max pooling操作和mean pooling操作不同点在于需要记录下池化操作时到底哪个像素的值是最大。
3.TextCNN的原理是什么?
将卷积神经网络CNN应用到文本分类任务,利用多个不同大小的卷积核来提取句子中的关键信息(类似于多窗口大小的N-gram),从而能够更好地捕捉局部相关性。
4.在情感分析任务中,TextCNN的卷积核,卷积的是哪些向量呢?卷积卷的是这些向量的什么成分?
卷积的是相邻字和字向量,由于句子中相邻的字之间关联性很高,因此当用卷积核向下滑动时,得到了字意和上下文的成分。
5.TextCNN的卷积核大小是什么样的?
输入是一个句子,输入的每一行向量代表一个字,因此卷积核的宽度是与字向量的维度一致,高度可以自行设置(通常取值2,3,4),类似于N-gram。
6.怎么判断TextCNN卷出来的结果是你想要的结果?准确率是怎么验证的?
召回率过高可能导致准确率过低,反之亦然,所以综合考虑分类结果召回率和准确率的平衡,使用F1值评估结果。