clear all
clc
inputNums=20; %输入层节点数
inputNeurons=5;%输入层神经元数
inputEvery=4;%每个神经元的输入节点数
outputNums=1; %输出层节点数
hideNums=5; %隐层节点数
maxcount=20000; %最大迭代次数
samplenum=3; %一个计数器,无意义
precision=0.001; %预设精度
yyy=1.3; %yyy是帮助网络加速走出平坦区
alpha=0.01; %学习率设定值
a=0.5; %BP优化算法的一个设定值,对上组训练的调整值按比例修改 字串9
error=zeros(1,maxcount+1); %error数组初始化;目的是预分配内存空间
errorp=zeros(1,samplenum); %同上
v=rand(inputNums,hideNums); %20*5;v初始化为一个20*5的随机归一矩阵; v表输入层到隐层的权值
deltv=zeros(inputNums,hideNums); %20*5;内存空间预分配
dv=zeros(inputNums,hideNums); %20*5;
w=rand(hideNums,outputNums); %5*1;同V
deltw=zeros(hideNums,outputNums);%5*1
dw=zeros(hideNums,outputNums); %5*1
samplelist=[0.132,0.131,0.133,0.132,0.142,0.1