多元高斯分布是非参_多元高斯分布(The Multivariate normal distribution)

本文详细介绍了多元高斯分布的概念,从标准高斯函数到一元高斯函数的一般形式,再到独立和相关多元正态分布。通过数学推导和直观解释,阐述了在不同维度下概率密度函数的变化,并探讨了如何处理变量之间的相关性,以及如何通过坐标变换实现去相关化。
摘要由CSDN通过智能技术生成

在数据建模时,经常会用到多元高斯分布模型,下面就这个模型的公式并结合它的几何意义,来做一个直观上的讲解。

1, 标准高斯函数

878ff4b85416502e609a0d7bbdd892ce.png

高斯函数标准型:

$f(x) = \frac{1}{\sqrt{2π}}e^{-\frac{x^2}{2}}$

这个函数描述了变量 x 的一种分布特性,变量x的分布有如下特点:

Ⅰ, 均值 = 0

Ⅱ, 方差为1

Ⅲ, 概率密度和为1

2, 一元高斯函数一般形式

200e681137210bac397cac49d001b5ec.png

一元高斯函数一般形式:

$f(x) = \frac{1}{\sqrt{2π}σ}e^{-\frac{(x-μ)^2}{2σ^{2}}}$

我们可以令:

$z = \frac{x - μ}{σ}$

称这个过程为标准化, 不难理解,$z ∼ N(0, 1)$,从z -> x的过程如下:

Ⅰ, 将 x 向右移动 μ 个单位

Ⅱ, 将密度函数伸展 σ 倍

而标准化(x -> z)所做的事情就是上述步骤的逆向

唯一不太好理解的是前面 $\frac{1}{\sqrt{2π}σ}$ 中的σ, 为什么这里多了一个 σ, 不是 2σ 或其他?

当然,这里可以拿着概率密度函数的性质,使用微积分进行积分,为了保证最终的积分等于1, 这里必须是 σ

这里我想说一下自己的直观感受:

0058cc0f0023bf5f1044e27a17dd1d28.png

实线代表的函数是标准高斯函数:

$f(x) = \frac{1}{\sqrt{2π}}e^{-\frac{x^2}{2×2^{2}}}$

虚线代表的是标准高斯函数在 x 轴方向2倍延展,效果如下:

A(x = 1) -> D(x = 2)

E(x = 1.5) -> F(x = 3)

G(x = 2) -> H(x = 4)

横向拓宽了,纵向还是保持不变,可以想象,最后的函数积分肯定不等于1

采用极限的思想,将 x 轴切分成无穷个细小的片段,每个片段可以与函数围城一个区域,因为我的切分足够小,这个区域的面积可以近似采用公式:面积 = 底 × 高 求得:

从 AQRS -> DTUV, 底乘以2倍,高维持不变,所以,要保持变化前后面积不变,函数的高度应该变为原来的 1/2

所以高斯函数在 x 轴方向做2倍延展的同时,纵向应该压缩为原来的一半,才能重新形成新的高斯分布函数

扩展到一般情形,x 轴方向做 σ 倍延拓的同时, y 轴应该压缩 σ 倍(乘以 1/σ)

3, 独立多元正态分布

先假设n个变量 $x = \left[ \begin{matrix} x_{1}, x_{2},\cdots,x_{n}\end{matrix}\right]^\mathrm{T}$ 互不相关,且服从正态分布(维度不相关多元正态分布),各个维度的均值$E(x) = \left[ \begin{matrix} μ_{1}, μ_{2},\cdots,μ_{n}\end{matrix}\right]^\mathrm{T}$, 方差 $σ(x) = \left[ \begin{matrix} σ_{1}, σ_{2},\cdots,σ_{n}\end{matrix}\right]^\mathrm{T}$

根据联合概率密度公式:

$f(x) = p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值