10分钟搞定高德地图 MCP 选择约会地点、用 Trae 三天开发效率APP丨AI Coding 周刊第 2 期

在这里插入图片描述

Hello,新一期的 AI Coding 周刊和大家如约见面啦!

还没刷到掘金 AI Coding 专区的友友们快去先探索一下吧~

专区直通车>>>https://juejin.cn/aicoding

AI Coding 周刊旨在专注于发掘推荐站内有关 AI Coding 的优质内容和相关创作者,欢迎大家踊跃提出宝贵建议,多多投稿砸向专区!!站内投稿时记得带上 #AI 编程# 的标签哦~

话不多说,让我们一起来看看上周有哪些大佬佳作吧~

注:以下内容排名不分先后

🌟推荐内容

MCP:“万能接口”用起来

什么是 MCP 服务?如何利用 cursor + MCP 快速将现有服务接入大模型?

目前已有许多成熟的 MCP 服务,例如 GitHub 的 MCP 支持创建仓库、提交 PR 等操作;Figma 的 MCP 可以直接生成 UI 设计图;浏览器和操作系统的 MCP 则能增强 cursor 的能力,甚至可以让 cursor 基于浏览器中的错误信息自动调试代码。这些服务极大地扩展了 LLM 的应用场景,使其能够更智能地完成复杂任务。

基于 MCP 的 AI Agent 应用开发实践

最近大家都在聊 MCP,发现有个最重要的点被忽略了 『通过标准化协议,将工具提供方与应用研发者解耦』,这一点带来的将是 AI Agent 应用研发范式的转移(类似 Web 应用研发的前后端分离)。

本文以开发 Agent TARS 应用为例,尽可能详细地介绍 MCP 在『开发范式』、『工具生态扩展』上起到的作用。

10分钟搞定高德地图 MCP!我用 AI 解决了约会地点选择难题

想象一下,当 AI 能够调用各种专业工具和数据源时,它的能力边界被极大拓展。这就像是从单打独斗的个体战士,一下子升级为指挥着各种专业团队的将军。无论是地图导航、数据分析、图像处理,还是内容创作,AI 都能找到最合适的"专家"来完成任务。

MCP 就是给大模型装上了翅膀,让它能够飞得更高、看得更远,为我们解决更多实际问题。而这个咖啡馆选择的小例子,只是冰山一角。随着更多 MCP 的出现,我们将看到 AI 在更多领域展现出惊人的能力。

用 MCP 让 Claude 控制 ChatGPT-4o,自动生成吉卜力风格的分镜

这是一个模型上下文协议(MCP)工具,允许 Claude 与 macOS 上的 ChatGPT 桌面应用进行交互,主要功能包括直接从 Claude 询问 ChatGPT 问题、查看 ChatGPT 对话历史记录、继续现有的 ChatGPT 对话等。

MCP 和 Function Calling 的区别是什么?

在没有 MCP 之前,Function Calling 请求第三方往往需要在客户端内编写代码,如果需要对接的服务有很多,而且标准不统一,客户端往往需要写大量的代码。

通过 MCP 标准协议,客户端不再需要干这些活,而把函数声明和调用逻辑交给 MCP 服务器,MCP客户端只需要整理和执行调用即可。

Dify:开箱即用,无缝扩展

发现了个好东西:Dify,快速搭应用的小帮手

名字听起来挺酷,Dify 有点“Define”和“Modify”的意思,也就是说你可以用它定义一个东西,然后随时改来改去。它主打的是让人人都能上手做应用,尤其是那种跟智能对话、知识整理相关的玩意儿。比如你想搞个能回答问题的客服工具,或者整理一堆文档做个内部问答系统,Dify 都能帮上忙。 我喜欢它的一点是,你不需要是个程序员也能玩得转。界面很直观,像搭积木一样,拖拖拽拽就差不多了。而且它是开源的,想自己装到电脑上用也没问题,数据都在自己手里,挺放心。

从开发新手角度对比 dify 和 n8n:哪个更适合你?

作为一个刚入门的开发者,我觉得这两个工具都很棒,但它们适合的人群真的不太一样。

  • 如果你对 AI 感兴趣,想试试开发一些智能应用,比如聊天机器人或者内容生成工具,那 dify 绝对是你的首选。它就像一个专门为 AI 开发设计的“作弊码”,能让你快速上手,做出很酷的东西。
  • 如果你更想省去一些重复的工作,或者需要把不同的工具连起来,比如自动处理数据、发送通知,那 n8n 会更适合你。它的灵活性和集成能力真的很强大,感觉像一个“万能遥控器”。

Cursor:用过都说好

新版本 Cursor rules .mdc 格式文件使用经验分享

根据官网的 changelog,新版本引入了 Project rules,用于对项目规则进行管理。这将逐步替代根目录下的 .cursorrules 文件,从而实现更细化的规则管理,并提升开发体验(DX)。

Cursor + MasterGo 前端一键生成页面

随着 mcp 服务的兴起,各种开发工具跟智能 ide 的结合将越来越普遍,掌握这些开发方法,一些情况下还是很方便的,不过经过测试,复杂页面生成效果还不是很理想,目前还是在 html 页面生成,随后有时间会尝试一下 .vue 文件生成。

Trae:更快、更好、更准确

用 Trae 三天开发效率APP-惜命

AI 工具主要依赖已有的数据和模式,在代码生成、自动调试、维护开发文档等方面表现出色,可以利用它来处理 重复性工作,提高工作效率,以便腾出更多时间专注于设计系统架构、解决复杂问题。我们的核心竞争力在于:创造性思维、对业务的理解和解决问题的能力,无所不知的 AI 还可以充当我们的老师,帮助我们快速学习新知识,扩展自己的能力边界,培养跨领域的思维能力。拥抱 AI,而不是与它对抗~

Trae 请帮我生成一个 AI 导航站

随着 AI 工具和开发资源的爆炸式增长,我们经常需要在各种网站和工具之间切换。为了解决这个问题,我决定开发一个现代化的导航站,集成常用的 AI 工具、开发资源和云服务等,并且实现平滑的滚动和菜单联动效果。本文将详细记录整个实现过程,包括技术选型、组件设计、样式处理和交互优化等方面。

💫掘友自荐

到底 MCP 有什么魅力?10分钟让 AI 直接操作数据库!

平时开发的时候,免不了要造一些测试数据到数据库,以前都是告诉 AI DDL,让它生成对应的 insert 语句,然后手动 copy 到控制台执行。现在我们把这个过程全部交给 AI 来做,甚至把实现这个过程的代码也可以让 AI 来写!

程序员究竟怎样用 AI?深度解读 WIRED 调查报告《 How Software Engineers Actually Use AI 》

AI 时代的编程行业充满未知,同时也蕴含机遇。平时从社交媒体上程序员们对 AI 的讨论来看,大多数程序员并未因 AI 放弃或者躺平,而是理性评估、结合自身优势去拥抱变革。正如过去从汇编到高级语言、从手写到自动补全到 AI 自动生成的每一次演进一样,最终还是人机协作带来新的高度,AI 也不会例外。

📖投稿方式

AICoding专区主理人目前正在招募中,有感兴趣的掘友们可以联系 Captain,也欢迎在评论区推荐或者自荐优秀的 AI Coding 方面的创作者和文章。

03-31
<think>好的,我需要处理用户关于MCP与n8n集成的问题。首先,用户可能不太清楚MCP是什么,我需要先确认MCP的全称和背景。根据上下文,可能是指Multi-Cloud Platform,即多云管理平台,或者某个特定厂商的产品,比如MicroFocus的MCP。但常见的是多云平台,比如像IBM的Multicloud Manager或者开源工具如Kubernetes相关的管理平台。 接下来,n8n是一个开源的工作流自动化工具,类似于Zapier,但更灵活,允许用户自定义节点和逻辑。用户想知道如何将MCP与n8n集成,实现自动化流程。需要先了解两者的接口和API情况。 可能的集成方法包括:通过n8n的HTTP请求节点调用MCP的API,或者使用现有的n8n节点库中的连接器。如果MCP有REST API,用户可以在n8n中设置Webhook或定时触发器,执行API请求,获取数据或触发操作。例如,当MCP中的某个资源状态变化时,n8n可以自动执行后续步骤,如发送通知或更新数据库。 还需要考虑认证方式,比如API密钥、OAuth等,确保集成的安全性。此外,可能需要数据处理,如解析JSON响应,使用n8n中的函数节点进行转换。 用户可能的需求场景包括自动化云资源管理、监控报警、成本优化等。例如,当MCP检测到某个云服务的费用超出预算时,通过n8n自动发送邮件或调整资源配置。 需要验证是否有现成的n8n节点支持MCP,或者是否需要自定义节点。如果没有,建议用户使用HTTP请求节点,并查阅MCP的API文档来构建请求。 同时,应该提醒用户测试工作流的各个步骤,处理可能的错误和异常,确保流程的稳定性。最后,生成相关问题,帮助用户深入探索集成细节和应用场景。</think>### MCP与n8n的集成方法 #### 1. **基本概念解析** - **MCP(Multi-Cloud Platform)**:指多云管理平台,用于统一管理多个云服务(如AWS、Azure、GCP)的资源、监控和自动化[^1]。 - **n8n**:开源工作流自动化工具,支持通过可视化界面连接不同应用和API,实现任务自动化。 #### 2. **集成核心思路** 通过n8n调用MCP的API接口,或利用现有插件实现双向数据交互。典型场景包括: - 多云资源状态监控与告警触发 - 自动化部署/调整云资源 - 成本分析与报告生成 #### 3. **具体实现步骤** **步骤1:确认MCP的API支持** - 查阅MCP文档(如IBM Cloud Pak、Flexera等),获取API端点、认证方式(如OAuth2、API Key)和操作权限。 **步骤2:在n8n中配置MCP连接** - **方法一:使用HTTP Request节点** ```json // 示例:调用MCP的虚拟机列表API { "method": "GET", "url": "https://mcp-api.example.com/v1/vms", "headers": { "Authorization": "Bearer {{$env.MCP_API_KEY}}" } } ``` - **方法二(若有现成节点)**:在n8n节点库搜索MCP插件(如ServiceNow、AWS等类似服务的集成方式)。 **步骤3:设计自动化工作流** - **场景示例**:当MCP检测到资源超负荷时,自动通过n8n扩容并通知团队。 ``` MCP监控告警 → n8n Webhook触发 → 调用MCP扩容API → 发送Slack通知 ``` #### 4. **安全与调试建议** - 使用n8n的凭证管理功能存储API密钥,避免明文暴露。 - 通过n8n的调试模式逐步测试API响应,处理异常状态码(如429限流)。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值