一文搞懂 MCP Servers

一文搞懂 MCP Servers

什么是MCP

MCP概念

MCP(Model Context Protocol,模型上下文协议)是由 Anthropic 提出并于 2024 年 11 月开源的一种通信协议,旨在解决大型语言模型(LLM)与外部数据源及工具之间无缝集成的需求。

它通过标准化 AI 系统与数据源的交互方式,帮助模型获取更丰富的上下文信息,从而生成更准确、更相关的响应。

主要功能

  • 上下文共享:应用程序可以通过 MCP 向模型提供所需的上下文信息(如文件内容、数据库记录等),增强模型的理解能力。
  • 工具暴露:MCP 允许应用程序将功能(如文件读写、API 调用)暴露给模型,模型可以调用这些工具完成复杂任务。
  • 可组合的工作流:开发者可以利用 MCP 集成多个服务和组件,构建灵活、可扩展的 AI 工作流。
  • 安全性:通过本地服务器运行,MCP 避免将敏感数据上传至第三方平台,确保数据隐私。

MCP架构

MCP 采用客户端-服务器架构:

  • MCP 客户端(Client):通常是 AI 应用程序(如 Claude Desktop 或其他 LLM 工具),负责发起请求并与服务器通信。
  • MCP 服务器(Server):轻量级程序,负责暴露特定的数据源或工具功能,并通过标准化协议与客户端交互。

通信格式:基于 JSON-RPC 2.0,支持请求、响应和通知三种消息类型,确保通信的标准化和一致性。

MCP Servers主要功能

MCP Servers 作为一个轻量级的本地服务,旨在为客户端提供数据访问和功能执行的接口。

1. 资源暴露(Resource Exposure)

资源是服务器提供给客户端的数据实体,可以是文件、数据库记录、内存中的对象等。

例如:

  • 文件资源:file:///home/user/report.txt
  • 内存资源:memo://recent-insights

2. 工具提供(Tool Provisioning)

工具是服务器暴露的可执行功能,客户端可以通过调用这些工具完成特定任务。

例如:

  • 查询数据库:query_database(参数:SQL 语句,返回:查询结果)
  • 文件写入:write_file(参数:文件路径、内容)

3. 动态通知(Dynamic Notification)

当资源发生变化时,服务器可以通过通知机制(如 notification 消息)主动推送更新到客户端。

4. 会话管理(Session Management)

处理客户端的连接初始化、能力协商和会话关闭。

自定义 MCP Servers

  1. 本地实现一个文件资源服务,创建 mcp_server.py 文件。
import json
import sys

# 处理客户端请求
def handle_request(request):
    method = request.get("method")
    params = request.get("params", {})
    request_id = request.get("id")

    if method == "initialize":
        return {
            "jsonrpc": "2.0",
            "result": {"version": "1.0", "capabilities": ["resources", "tools"]},
            "id": request_id
        }
    elif method == "read_resource":
        uri = params.get("uri")
        with open(uri.replace("file:///", ""), "r") as f:
            content = f.read()
        return {"jsonrpc": "2.0", "result": content, "id": request_id}
    elif method == "call_tool":
        tool_name = params.get("name")
        if tool_name == "echo":
            return {"jsonrpc": "2.0", "result": params.get("message"), "id": request_id}
    else:
        return {"jsonrpc": "2.0", "error": {"code": -32601, "message": "Method not found"}, "id": request_id}

# 主循环:通过 Stdio 通信
def main():
    while True:
        # 从 stdin 读取请求
        raw_input = sys.stdin.readline().strip()
        if not raw_input:
            break
        request = json.loads(raw_input)
        
        # 处理请求并返回响应
        response = handle_request(request)
        sys.stdout.write(json.dumps(response) + "\n")
        sys.stdout.flush()

if __name__ == "__main__":
    main()
  1. 通过 python 启动服务
python mcp_server.py
  1. 在相同的目录下创建 test.txt 文件。
Hello, this is a test file!
  1. 另外启动一个命令窗口,输入:
echo '{"jsonrpc": "2.0", "method": "read_resource", "params": {"uri": "file:///D:/path/to/test.txt"}, "id": 2}' | python mcp_server.py

{"jsonrpc": "2.0", "result": "Hello, this is a test file!", "id": 2}

注:此处使用的是 PowerShell,我们看到服务返回了文件的内容。

使用现有 MCP Servers

GitHub:在 GitHub 上查找 MCP servers:

网站:通过下面的网站查找 MCP servers:

UI自动化相关的 MCP servers

我们以 Playwright 项目为例子。

playwright 项目:https://github.com/AutoTestClass/playwright-mind

在项目里添加 playwright-mcp-server

git clone https://github.com/AutoTestClass/playwright-mind
cd playwright-mind
npm install -g @executeautomation/playwright-mcp-server # <--添加--

MCP Client

MCP client 一般选用 AI 应用程序(如 Claude Desktop、cline 或其他 LLM 工具),负责发起请求并与服务器通信。

我们这里选用 VSCode + cline 的组合,关于二者的使用,铺天盖地都是使用的文章,这里就不介绍了。

  1. 首先,在 VSCode 中打开 cline 插件,在 MCP servers 中搜索 playwright 插件安装。

  1. 然后,配置 playwright mcp servers 的启动配置。

{
  "mcpServers": {
    "playwright": {
      "command": "npx",
      "args": ["-y", "@executeautomation/playwright-mcp-server"]
    }
  }
}
  1. 最后,通过 LLM 大模型,描述需求(UI 自动化相关操作),LLM 大模型会通过 playwright MCP servers 启动浏览器完成一些 UI 自动化操作。

MCP Servers的作用

最后,我们再来总结 MCP Servers 的作用。懒得画图了,下面是我网上找的一张图。结合前面的操作流程,相信你已经知道 MCP Servers 可以做什么了。

MCP Servers 真正的价值不在于我们传统的 UI 自动化测试,因为它是通过文字描述操作浏览器去完成一些工作。并没有自动化的脚本沉淀,当然,如果你把 Prompt 沉淀下来当作自动化脚本也是可以的,这确实颠覆了我们写自动化脚本的形式。
当然,MCP Servers 更多的价值不是浏览器自动化,而是利用 LLM 操作本地资源,例如,本地文件,数据库、git 等。想想 你不需要写复杂的 SQL 语句,通过自然语言描述就可以轻松完成本地数据库的操作。 这种效率的提升是非常明显。

原创作者: fnng 转载于: https://www.cnblogs.com/fnng/p/18744210
### 配置本地 MCP Server 至 MCP Config 的方法 在 TypeScript 环境下配置本地 MCP Server 到 MCP Config 是一项常见的开发操作,以下是详细的说明: #### 1. 安装必要的依赖项 为了使 TypeScript 能够正常编译并支持 MCP Server 和 MCP Config 的集成,需安装以下依赖包: ```bash npm install typescript @types/node --save-dev ``` 这一步确保项目具备基础的 TypeScript 支持以及 Node.js 类型定义文件[^2]。 #### 2. 创建 `tsconfig.json` 文件 TypeScript 编译器需要通过 `tsconfig.json` 来指定项目的构建选项。创建该文件时可以参考如下模板: ```json { "compilerOptions": { "target": "ES6", "module": "commonjs", "outDir": "./dist", "strict": true, "esModuleInterop": true }, "include": ["src/**/*"], "exclude": ["node_modules"] } ``` 上述设置指定了目标 JavaScript 版本、模块化方式以及其他重要参数[^3]。 #### 3. 初始化 MCP Server 配置 MCP Server 的初始化通常涉及到加载环境变量和启动服务端逻辑。可以通过引入 `.env` 文件来管理敏感数据,并利用第三方库如 `dotenv` 加载这些变量: ```javascript import * as dotenv from 'dotenv'; dotenv.config(); ``` 接着,在主入口文件中完成服务器实例化的代码片段可能类似于下面这样: ```typescript import express, { Application } from 'express'; const app: Application = express(); app.get('/', (req, res) => { res.send('MCP Server is running...'); }); const PORT = process.env.MCP_SERVER_PORT || 8080; app.listen(PORT, () => console.log(`Server started on port ${PORT}`)); ``` 此部分实现了基本的服务监听功能[^4]。 #### 4. 将 MCP Server 连接到 MCP Config 要实现 MCP Server 对 MCP Config 的调用或同步,可采用 RESTful API 或 GraphQL 接口形式。假设使用 Axios 库发送 HTTP 请求,则先安装它: ```bash npm install axios ``` 随后编写用于连接远程配置中心的具体函数: ```typescript import axios from 'axios'; async function fetchConfigFromRemote(): Promise<any> { try { const response = await axios.get(process.env.MCP_CONFIG_URL!); return response.data; } catch (error) { throw new Error('Failed to retrieve configuration'); } } // Example usage within your application lifecycle (async () => { const configData = await fetchConfigFromRemote(); console.log(configData); // Process the retrieved data accordingly })(); ``` 这里展示了如何动态获取外部存储中的配置信息[^5]。 --- ### 总结 以上流程涵盖了从准备开发工具链到实际部署 MCP Server 并接入 MCP Config 所需的关键环节。每一步都紧密围绕着现代前端工程实践展开讨论,旨在提供清晰而实用的技术指导。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值