夜间灯光数据可以被用来研究人类活动的空间分布,例如能源消费模式、勾勒城市边界,很多研究表明灯光的面积或亮度与人口密度、GDP、能源消耗、碳排放、贫困分布、不透水表面密度分布图、粮食需求分布图、城市建设中的钢铁使用情况分布、自然灾害、地区武装冲突等等有很高的相关性,可以利用夜间灯光数据做预测分析。本文将目前可获取的夜间灯光数据进行整理,大家可以根据自己的研究需求选用合适的数据。
1. DMSP-OLS
传统上普遍使用的卫星夜间灯光数据是DMSP-OLS数据。美国空军国防气象卫星计划(DMSP)从20实际70年代就开始实行。DMSP是一个太阳同步卫星,绕地球两极飞行,飞行高度大概是830km,周期是101分钟。每天DMSP-OLS可以环绕地球14圈,对于各地的夜间观测一般于当地时间20:30到21:30之间经过该地上空,所以DMSP日夜卫星可以提供每天的全球夜间灯光数据。在夜间,OLS传感器可以探测到的辐射强度是从1.54×10−9 W·cm−2·sr−1·μm−1到3.17×10−7 W·cm−2·sr−1·μm−1,用数字0-63表示,0代表该处没有灯光,而63则是饱和灯光值。因此,OLS数据中的灯光强度是一个相对的值,而不是绝对灯光辐射强度值。OLS传感器全球的扫描范围是从北纬75°到南纬65°,除了高纬度的两极区域,基本覆盖了所有人类居住的区域。其分辨率分为两种,一种称为“fine”的0.5千米的分辨率,另一种称为“smooth”的2.7千米的分辨率。
NOAA/NGDC Earth Observation Group 提供了1992年到2013年每年的夜间灯光数据。目前放在以下两个网站上。Earth Observation Group - Defense Meteorological Satellite Progam, Boulder | ngdc.noaa.govhttps://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
DMSP Nighttime Lightshttps://eogdata.mines.edu/products/dmsp/最新的第四代DMSP-OLS夜间灯光数据(Version 4 DMSP-OLS Nighttime Lights Time Series)可以从网站下载,这些数据都是去除了云层的干扰,均采用“smooth”的分辨率。当有两个卫星同时采集数据时,就分别生成两个数据。数据被转换成30弧秒的栅格,范围从经度-180°到180°和纬度-65°到75°。所有数据都利用一定方法去除了太阳光、月光、光火、云层和极光的影响。此网站的数据集中分为四类:无云观测次数数据(F1?YYYY_v4b_cf_cvg.tif)、未经去除噪音的可见光平均值数据(F1?YYYY_v4b_avg_vis.tif)、去除噪音的稳定光数据(F1?YYYY_v4b_stable_lights.avg_vis.tif),以及可见光平均值乘观测频率的数据(avg_lights_x_pct)。其中广泛被应用于监测那些主要依靠统计手段来获得的数据(例如电力消费和社会经济活动强度)的是去除噪音的稳定光数据(stable_lights)。如遇下载困难,可联系作者帮忙下载。
由于探测器的限制,灯光值只能从0到63,在很多城市区域,灯光很亮,其灯光实际值远远大于63,这就造成了灯光饱和区域的信息丢失。为此,EOG生产了一套没有传感器饱和的全球夜间灯光产品。可从以下网址获取。NOAA/NGDC - Earth Observation Group - Defense Meteorological Satellite Progam, BoulderDefense Meteorological Satellite Progamhttps://ngdc.noaa.gov/eog/dmsp/download_radcal.html
如遇下载困难,可联系作者帮忙下载。
DMSP全球夜间灯光序列是6颗独立卫星的OLS数据生成的。随着时间的推移,每个卫星的轨道逐渐转向更早的过境时间,从白天/夜晚轨道滑向黎明/黄昏轨道。 只要过境时间晚于19:30,DMSP传感器就会在全球范围内收集足够的夜间数据,用于每年的夜间灯光产品生产。 最近,NOAA发现F-15的轨道一直在移动,并在2012年开始收集黎明前的夜间数据,这种情况一直持续到2018年,卫星F16也可能在黎明前收集了可用的夜间数据,因此可用的DMSP夜间灯光数据扩大到2019年,只是原数据收集的是前半夜的数据,新数据(2013-2019) 收集的是后半夜的数据,如下图所示。数据可从DMSP Nighttime Lights网站下载。
上述网站还提供了将VIIRS数据转换为类似DMSP的数据(DMSP-like Nighttime Lights Derived from VNL (DVNL)),这是因为:(1)VIIRS的饱和值大于DMSP,(2)VIIRS传感器的空间分辨率比DMSP高5倍。 对于那些超过饱和阈值的DMSP数据,没有办法获得取值。 在VIIRS图像中将宽范围的值进行过滤或平滑是可能的,但没有确定的方法为DMSP添加细节。
2. VIIRS
由NASA和NOAA共同研发的新一代对地观测卫星Suomi NPP于2011年10月28日发射,搭载了五个对地观测传感器,其中包括可见光红外成像辐射仪Visible Infrared Imaging Radiometer Suite (VIIRS),其Day/Night Band (DNB)波段可以观测夜间灯光。相比于OLS,VIIRS有很大提升,例如,其分辨率为742 m,辐射的探测范围是3×10–9 W·cm−2·sr−1·μm−1到0.02 W·cm−2·sr−1·μm−1,事实上,可探测的噪声基底可达5×10−11 W·cm−2·sr−1·μm−1,分辨率更高,探测的辐射强度范围更广。但是,VIIRS也并不是在所有方面都优于OLS,例如,它可探测到的波长范围是505-890 nm,不包括500nm以下的LED光源,所以,在一些开始用更加节能的LED光源代替高压钠灯的城市,VIIRS可探测到的光强就会偏小,而OLS可探测到的波长范围是0.4μm到1.1μm,可以探测到更多LED光源。另外VIIRS是在当地时间凌晨1:30左右到达当地上空,此时利用灯光照明的人类活动一般比20:30-21:30要少,所以VIIRS探测到的灯光强度比OLS探测到的实际值要小(Falchi et al., 2016)。图1总结了OLS和VIIRS的主要参数对比。
图1
Earth Observation Group 在下面的网站提供了VIIRS DNB夜间灯光数据集。(该网址同时也集合了上面的DMSP-OLS数据,可以看哪个下载速度快用哪个)VIIRS Nighttime Lighthttps://eogdata.mines.edu/products/vnl/该数据产品包括了从2012年4月开始全球北纬75°到南纬65°每月的数据,每一组全球的灯光图像按照经纬度被切分为6个部分,云层、闪电、月光照射的影响被消除。整体来讲,VIIRS数据较OLS数据更容易利用算法分离出灯光和燃烧的火光,以及云层、雪覆盖的影响。图2为在城市尺度下两种探测卫星探测到的夜间灯光的对比情况,可以看出,VIIRS数据比OLS数据有更少的光亮面积,分辨率更高,甚至可以分辨出被明显照亮的街区干道,在城市中心,VIIRS数据比OLS数据有更少的过饱和现象,城市中心的灯光向四周的渗透现象也更少,可以更明显地分辨出城市中心和周边郊区。
图2
网站上第一代数据(v10)包含2012-最新月度数据,2015和2016的年度数据。v1数据有两种版本,“vcm”和“vcmsl”,“vcm”是去除了任何受stray-light影响的数据,“vcmsl”是经过stray-light校正程序,包括校正过的数据,并包含覆盖两极的更多数据,但是数据质量有所降低,用户可以选择使用。月度数据可以从tiled和non-tiled两种方式下载,tiled就是分区域,可以选择自己需要的区域,中国区域就是75N060E,non-tiled是全球整体,一次下载的数据量更全更大。
数据格式:GeoTIFF
分辨率:15 arc second (~500m at the Equator)
坐标参考:EPSG:4326 (Geographic Latitude/Longitude)
单位:(avg_rade9h) nW/cm2/sr
第二代数据(v20)包含2012-最新的全球年度数据,其中VIIRS_V2 average-masked数据基于第一代数据用新方法过滤火灾和背景光,属于较为常用的数据。如遇下载困难,可联系作者帮忙下载。
最近网站又更新了v2.1数据,说是修正了一些bug,可以下载2012-最新的全球年度数据。
网站上最新的说明说2022年7月左右因为仪器异常数据不可用。
后缀名解释:
"vcm/vcmcfg" (VIIRS Cloud Mask). 未经过杂散光校正,如果有杂散光校正图像尽可能使用杂散光校正图像。
"vcmsl/vcmslcfg" (VIIRS Cloud Mask - Stray Light Removed). 仅适用于每月的VNL V1数据。
"vcm-ntl" (VIIRS Cloud Mask - Nighttime Lights). 基于"vcm" 图像,背景设置为0。
"vcm-orm" (VIIRS Cloud Mask - Outlier Removed). 过滤掉火灾和其他短暂光源的离群值。
"vcm-orm-ntl" (VIIRS Cloud Mask - Outlier Removed - Nighttime Lights). 基于 "vcm-orm" 图像,背景设置为0。
VNL V1
"avg_rade9",平均辐射强度, 单位:nW/cm2/sr
"avg_rade9h",平均辐射强度四舍五入至百分位 (nW/cm2/sr)
"cf_cvg",无云覆盖数
"cvg",覆盖数
VNL V2
"average",月均辐射强度, 单位:nW/cm2/sr
"average-masked",去除背景光的月均辐射强度, nW/cm2/sr
"cf_cvg",无云覆盖数
"cvg",覆盖数
"max",月最大辐射强度, nW/cm2/sr
"median",月辐射强度中位数, nW/cm2/sr
"median-masked",去除背景光的月辐射强度中位数, nW/cm2/sr
"min",月最小辐射强度, nW/cm2/sr
网站还包括了云层数据、灯光数据与其他数据相关性讨论的数据、不同区域提取的数据、为艺术家提供的高清图片数据、特殊地区观测数据、电灯闪烁数据等。
3. 珞珈一号卫星数据
该卫星是全球首颗专业夜光遥感卫星,由武汉大学领衔,联合长光卫星技术有限公司研制。这是武汉大学“珞珈一号”科学试验卫星工程的第一颗卫星,2018年6月2日发射,分辨率130m,幅宽250km,主要用于试验验证国内处于空白的“夜光遥感”技术,和国家急需的“低轨卫星导航增强”等技术。
数据可从网站上下载,需要辐射亮度转换后使用,网站上都有说明。
珞珈一号http://59.175.109.173:8888/index.html#
4. 全球夜间灯光时序数据
中国农业大学土地科学与技术学院李雪草教授团队的成果。
数据简介: 通过协调来自DMSP数据的相互校准的NTL观测值和来自VIIRS数据模拟的类似DMSP的NTL观测值,在全球范围内生成了一个综合的、一致的NTL数据集。生成的全球DMSP NTL时间序列数据(1992-2022)显示出一致的时间趋势。分辨率1km。
相关论文: Li, X.C., Zhou, Y.Y.*, Zhao, M., & Zhao, X. 2020. A harmonized global nighttime light dataset 1992-2018. Scientific Data, 7, 168. doi: 10.1038/s41597-020-0510-y.
数据链接: https://pan.baidu.com/s/1JzxN54pecQlM6SEHdx4xTg?pwd=7d9k
5. 全球500米分辨率的“类NPP-VIIRS”夜间灯光数据集(2000-2022)
华东师范大学余柏蒗教授团队的成果。基于卷积神经网络的自动编码器(AE)模型整合校准2000-2012年DMSP-OLS年度夜间灯光数据和2013-2018年NPP-VIIRS月度夜间灯光数据,进而获取了模拟NPP-VIIRS夜间灯光扩展时间序列数据,该校准数据经检验具有良好精度和时空一致性。
相关论文:Chen Zuoqi, Yu Bailang*, Yang Chengshu, Zhou Yuyu, Yao Shenjun, Qian Xingjian, Wang Congxiao, Wu Bin, Wu Jianping. An Extended Time Series (2000–2018) of Global NPP-VIIRS-Like Nighttime Light Data from a Cross-Sensor Calibration. Earth System Science Data, 2021, 13(3): 889-906.doi:10.5194/essd-13-889-2021, 2021
下载方式:
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/YGIVCD
6. 1984-2020年中国夜间灯光数据集(PANDA-China)
清华大学宫鹏、徐冰课题组研究成果。融合了DMSP和NPP数据,提供长时间序列的夜间灯光数据,数据质量较高。
“现有夜光数据集(如美国国防气象卫星计划(DMSP)和国家极地轨道可见光红外成像辐射计(NPP))在时间范围和数据质量上都很有限。因此我们提出了一种夜间灯光卷积长短期记忆(NTLSTM)网络,并将该网络应用于生长出世界上第一套1984 - 2020年中国的人工夜间灯光数据集(PANDA)。模型与原始图像的模型评估显示,平均均方根误差(RMSE)达到0.73,决定系数(R2)达到0.95,像素级的线性斜率为0.99,表明生成产品的数据质量较高。模型结果可以很好地捕捉到新建成区的时间趋势。社会经济指标(建成区面积、国内生产总值、人口)与PANDA的相关性比现有的所有产品都更好,这表明它在寻找不同阶段夜间灯光变化的不同控制方面有更好的潜力。此外,PANDA描绘了不同的城市扩展类型,在代表道路网络方面胜过其他产品,并在早期提供了潜在的夜光景观。”
引用地址 |
---|
张立贤, 任浙豪, 陈斌, 宫鹏, 付昊桓, 徐冰.1984-2020年中国夜间灯光数据集(PANDA-China),可持续发展大数据国际研究中心,2024.doi:10.12237/casearth.66693dd3819aec0d5564a3f9 |
下载地址:
https://data.casearth.cn/dataset/66693dd3819aec0d5564a3f9#filesArea
如遇下载困难,可联系博主帮忙!
欢迎大家留言、补充,提出宝贵意见,谢谢大家的支持~