Basler相机使用(pylon6)+clion编辑器+qt+opencv

CmakeList.txt中配置pylon

以案例代码中的Grap.cpp为例,参照里面的Cmakefile编写
在这里插入图片描述
参照写出CmaleList.txt

cmake_minimum_required(VERSION 3.16)
project(Grab_test)

#find_package(OpenCV REQUIRED)
set(CMAKE_CXX_STANDARD 14)

set(PYLON_ROOT "/opt/pylon")

include_directories("${PROJECT_BINARY_DIR}")
include_directories("${PYLON_ROOT}/include")

EXEC_PROGRAM("${PYLON_ROOT}/bin/pylon-config" ARGS --cflags OUTPUT_VARIABLE CPPFLAGS)
#SET(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${CPPFLAGS}" CACHE STRING "CPPFLAGS")
SET(CPPFLAGS "${CPPFLAGS}" CACHE STRING "CPPFLAGS")
SET(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${CPPFLAGS}")

EXEC_PROGRAM("${PYLON_ROOT}/bin/pylon-config" ARGS --libs-rpath OUTPUT_VARIABLE LDFLAGS)
#SET(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${LDFLAGS}" CACHE STRING "LDFLAGS")
SET(LDFLAGS "${LDFLAGS}" CACHE STRING "LDFLAGS")
SET(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${LDFLAGS}")

EXEC_PROGRAM("${PYLON_ROOT}/bin/pylon-config" ARGS --libs OUTPUT_VARIABLE LDLIBS)
SET(LDLIBS "${LDLIBS}" CACHE STRING "LDLIBS")

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++14")

add_executable(${PROJECT_NAME} main.cpp)
target_link_libraries(${PROJECT_NAME} ${LDLIBS})

opencv安装

转自:https://www.jianshu.com/p/f646448da265
Ubuntu 16.04

1.1 下载Opencv

下载链接 http://opencv.org/releases.html,选择sources版本。

1.2 解压zip包
unzip opencv-3.4.10.zip
cd opencv-3.4.10

1.3 安装依赖库和cmake
sudo apt-get install cmake
sudo apt-get install build-essential libgtk2.0-dev libavcodec-dev libavformat-dev libjpeg.dev libtiff4.dev libswscale-dev libjasper-dev

1.4 执行cmake
mkdir my_build_dir
cd my_build_dir
cmake …

1.5 执行make命令
sudo make

1.6 执行install命令
sudo make install

这一步执行完毕之后,Opencv的编译过程就结束了,接下来的工作就是配置一些Opencv的编译环境。
2.1 将OpenCV的库添加到路径
sudo gedit /etc/ld.so.conf.d/opencv.conf

执行此命令后打开的可能是一个空白的文件,不用管,只需要在文件末尾添加
/usr/local/lib

2.2 生效配置文件
执行如下命令使得刚才的配置路径生效:
sudo ldconfig

2.3 配置bash
sudo gedit /etc/bash.bashrc

在末尾追加:
PKG_CONFIG_PATH=$PKG_CONFIG_PATH:/usr/local/lib/pkgconfig
export PKG_CONFIG_PATH

保存,执行如下命令使得配置生效:
source /etc/bash.bashrc

更新:
sudo updatedb
至此,所有配置都已经完成。

3 测试
找到 opencv-3.4.10/samples/cpp/example_cmake

cmake .
make
./opencv_example

遗传算法优化BP神经网络(GABP)是一种结合了遗传算法(GA)和BP神经网络的优化预测方法。BP神经网络是一种多层前馈神经网络,常用于模式识别和预测问题,但其容易陷入局部最优。而遗传算法是一种模拟自然选择和遗传机制的全局优化方法,能够有效避免局部最优 。GABP算法通过遗传算法优化BP神经网络的权重和阈值,从而提高网络的学习效率和预测精度 。 种群:遗传算法中个体的集合,每个个体代表一种可能的解决方案。 编码:将解决方案转化为适合遗传操作的形式,如二进制编码。 适应度函数:用于评估个体解的质量,通常与目标函数相反,目标函数值越小,适应度越高。 选择:根据适应度保留优秀个体,常见方法有轮盘赌选择、锦标赛选择等。 交叉:两个父代个体交换部分基因生成子代。 变异:随机改变个体的部分基因,增加种群多样。 终止条件:当迭代次数或适应度阈值达到预设值时停止算法 。 初始化种群:随机生成一组神经网络参数(权重和阈值)作为初始种群 。 计算适应度:使用神经网络模型进行训练和预测,根据预测误差计算适应度 。 选择操作:根据适应度选择优秀个体 。 交叉操作:对选择的个体进行交叉,生成新的子代个体 。 变异操作:对子代进行随机变异 。 替换操作:用新生成的子代替换掉一部分旧种群 。 重复步骤2-6,直到满足终止条件 。 适应度函数通常以预测误差为基础,误差越小,适应度越高。常用的误差指标包括均方根误差(RMSE)或平均绝对误差(MAE)等 。 GABP代码中包含了适应度函数的定义、种群的生成、选择、交叉、变异以及训练过程。代码注释详尽,便于理解每个步骤的作用 。 GABP算法适用于多种领域,如时间序列预测、经济预测、工程问题的优化等。它特别适合解决多峰优化问题,能够有效提高预测的准确和稳定
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值