matlab 车牌识别源码,车牌识别的matlab程序

这段MATLAB代码详细展示了如何进行车牌识别,包括图像预处理、边缘检测、区域定位、字符分割等步骤,最终实现车牌字符的识别与输出。
摘要由CSDN通过智能技术生成

% function [d]=main()

close all

clc    % 清空命令窗口的所有输入和输出,类似于清屏

%自动弹出提示框读入图像

[filename,filepath]=uigetfile('.jpg','输入一个需要识别的车牌图像');% 直接自动读入%

file=strcat(filepath,filename); %strcat函数:连接字符串;把filepath的字符串与filename的连接,即路径/文件名

I=imread(file);

figure('name','原图'),imshow(I);title('原图')

%图像增强

% h=ones(5,5)/25; %过滤器h

% I=imfilter(I,h);%真彩色增强

% figure('name','真彩色增强');imshow(I);title('真彩色增强');

I1=rgb2gray(I); % RGB图像转灰度图像

figure('name','灰度处理前'),subplot(1,2,1),imshow(I1);title('灰度处理前的灰度图');

subplot(1,2,2),imhist(I1);title('灰度处理前的灰度图直方图');

%线性灰度变换

I1=imadjust(I1,[0.3,0.7],[]);

figure('name','灰度处理后'),subplot(1,2,1),imshow(I1);title('灰度处理后的灰度图');

subplot(1,2,2),imhist(I1);title('灰度处理后的灰度图直方图');

%进行中值滤波

I1=medfilt2(I1);

figure,imshow(I1);title('中值滤波');

%边缘检测:sobel,roberts,canny,prewitt等

I2=edge(I1,'roberts',0.25,'both'); %边缘检测算法,强度小于阈值0.15的边缘被省略掉,'both'两个方向检测(缺省默认)

figure('name','边缘检测'),imshow(I2);title('robert算子边缘检测')

se=[1;1;1];

I3=imerode(I2,se);% 腐蚀Imerode(X,SE).其中X是待处理的图像,SE是结构元素对象

figure('name','腐蚀后图像'),imshow(I3);title('腐蚀后的图像');

se=strel('rectangle',[20,20]);% 25X25的矩形 strel???

I4=imclose(I3,se);% 用25*25的矩形对图像进行闭运算(先膨胀后腐蚀)有平滑边界作用

figure('name','平滑处理'),imshow(I4);title('平滑图像的轮廓');

I5=bwareaopen(I4,1000);% 从二进制图像中移除所有少于2000像素的连接对象,消失的是连续的白色像素数量少于2000的字符

figure('name','移除小对象'),imshow(I5);title('从对象中移除小对象');

[y,x,z]=size(I5);% y是行数,x是列数,z是维数

myI=double(I5);% 转成双精度型

tic   % 开始计时

Blue_y=zeros(y,1);% zeros(M,N) 表示的是M行*N列的全0矩阵

for i=1:y

for j=1:x

if(myI(i,j,1)==1) %% 判断蓝色像素

Blue_y(i,1)= Blue_y(i,1)+1;% 蓝色像素点统计

end

end

end

[temp MaxY]=max(Blue_y);% Y方向车牌区域确定 [temp MaxY]临时变量MaxY

PY1=MaxY;  % 以下为找车牌Y方向最小值

while ((Blue_y(P

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值