【实战 01】心脏病二分类数据集

目录

1. 获取数据集

2. 数据集介绍

3. 数据预处理

4. 构建随机森林分类模型

5. 预测测试集数据

6. 构建混淆矩阵

7. 计算查全率、召回率、调和平均值

8. ROC曲线、AUC曲线


 (注:每一章节可以为一个py文件,4、5、6、7写在同一个文件中,最好用jupyter notebook)

1. 获取数据集

下面两种方式:UCI、Kaggle

UCI Machine Learning Repository: Heart Disease Data Seticon-default.png?t=O83Ahttps://archive.ics.uci.edu/ml/datasets/heart+disease

 Heart Disease Dataset | KagglePublic Health Dataseticon-default.png?t=O83Ahttps://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset

 

得到的csv文件为:

2. 数据集介绍

数据集有1025行,14列。每行表示一个病人。13列表示特征,1列表示标签(是否患心脏病)


| age      | 年龄                                                         |
| sex      | 性别,1表示男,0表示女                                       |
| cp       | 心绞痛病史,1:典型心绞痛,2:非典型心绞痛,3:无心绞痛,4:无症状 |
| trestbps | 静息血压,入院时测量得到,单位为毫米汞柱(mm Hg)              |
| chol     | 胆固醇含量,单位:mgldl                                       |
| fbs      | 空腹时是否血糖高,如果空腹血糖大于120 mg/dl,值为1,否则值为0 |
| restecg  | 静息时的心电图特征。0:正常。1:  ST-T波有异常。2:根据Estes准则,有潜在的左 |
| thalach  | 最大心率                                                     |
| exang    | 运动是否会导致心绞痛,1表示会,0表示不会                      |
| oldpeak  | 运动相比于静息状态,心电图中的ST-T波是否会被压平。1表示会,0表示不会 |
| slope    | 心电图中ST波峰值的坡度(1:上升,2:平坦,3:下降)              |
| ca       | 心脏周边大血管的个数(0-3)          

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不菜不菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值