学习:遗传算法 和 python deap包遗传算法的实现


一、遗传算法

利用自然界物种遗传的理念,设计的一种最优解搜索算法。遗传算法以一种物种中的所有个体为对象,并利用随机化技术对一个被编码的参数空间进行高效搜索。其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。

一个容易理解的遗传算法例子,作者以背包问题讲解遗传算法。简单例子搞懂遗传算法(genetic algorithm)

算法伪代码:

BEGIN:
        i = 0;           //进化种群代数
        Initialize P(i);    //初始化种群 
        Fitness P(i);     //计算适宜值
        While(not Terminate-Condition) //不满足终止条件时,循环
        {
   
            i ++;              //循环
            GA-Operation P(i);  //交叉、变异操作
            Fitness P(i);        //计算适宜值
       }
 END  //结束算法

算法步骤描述:
初始化:种群规模P,遗

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我喝AD钙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值