一、遗传算法
利用自然界物种遗传的理念,设计的一种最优解搜索算法。遗传算法以一种物种中的所有个体为对象,并利用随机化技术对一个被编码的参数空间进行高效搜索。其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。
一个容易理解的遗传算法例子,作者以背包问题讲解遗传算法。简单例子搞懂遗传算法(genetic algorithm)
算法伪代码:
BEGIN:
i = 0; //进化种群代数
Initialize P(i); //初始化种群
Fitness P(i); //计算适宜值
While(not Terminate-Condition) //不满足终止条件时,循环
{
i ++; //循环
GA-Operation P(i); //交叉、变异操作
Fitness P(i); //计算适宜值
}
END //结束算法
算法步骤描述:
初始化:种群规模P,遗