在使用pytorch进行数据增广时碰到一个坑,对image和label分别进行增广,网络训练结果一直很差,查了很久才找到,原来分别image和label进行随机翻转操作时,是不同步的,记录之,防止以后再犯。
所以在对数据进行随机增广操作时,需要指定的参数,代码如下:
image_path = '/home/org/19.bmp'
label_path = '/home/mask/19.png'
image = Image.open(image_path)
print(image.size)
label = Image.open(label_path)
plt.figure()
plt.subplot(2, 2, 1)
plt.imshow(image)
plt.subplot(2, 2, 2)
plt.imshow(label)
p = np.random.choice([0, 1])#在0,1二者中随机取一个,
print(p)
transform = transforms.Compose([
transforms.RandomHorizontalFlip(p),#指定是否翻转
transforms.ToTensor()
])
img = transform(image)
lab = transform(label)
unloader = transforms.ToPILImage()
img = unloader(img)
lab = unloader(lab)
# print(img.shape)
plt.subplot(2, 2, 3)
plt.imshow(img)
plt.subplot(2, 2, 4)
plt.imshow(lab)
plt.show()
结果如下: