修正牛顿法及其matlab实现

由上篇文章知道,牛顿法具有二阶收敛速度,收敛速度比较快,但是用这个算法的一个必要条件是,目标函数的Hess阵必须是正定的,否则难以保证他的下降方向是正确的,所以我们可以采用牛顿法与最速下降法结合,即修正牛顿法。

修正牛顿法的基本原理是:当Hess阵正定时,采用牛顿方向作为搜素方向;若不正定,则采用最速下降法,即负梯度方向作为搜索方向。算法的步骤为:

步0:确定终止误差e=(0~1),给定初始值,rho=(0~1),sigma=(0~0.5),给定初始值x0,令k=0

步1:计算gk=\bigtriangledownf(xk)的值,若||gk||<=e停止运算,输出xk作为近似最优解,否则转步2

步2:计算Gk=\bigtriangledown^2f(xk),并解方程Gk*dk+gk=0,求出dk,并且要求gk'*dk<0(就是满足正定),若满足,则转步3,。否则令dk=-gk,转步3

步3:用线搜索技术来确定步长因子\alphak

步4:令Xk+1=xk+\alphak*dk,k=k+1,转步1

具体代码与前两篇文章类似,这里不再赘述,下面给出另一种修正牛顿法,即引进一个阻尼因子uk>=0,在每一迭代步选取适当的参数uk,使得Ak=G(xk)+uk*I正定,I是单位矩阵,具体的算法步骤为:

步0:确定终止误差e=(0~1),给定初始值,\delta=(0~1),\sigma=(0~0.5),\tau=[0,1],给定初始值x0,令k=0

步1:计算gk=\bigtriangledownf(xk),uk=||gk||^(1+\tau),若||gk||<=e,停止运算,输出xk为近似最优解,否则转步2

步2: 计算Hess阵,Gk=\bigtriangledown^2f(xk),并解线性方程(Gk+uk*I)*dk=-gk,解得dk

步3:利用Armijo搜索技术确定步长,步长\alphak=\delta^mk,m的值从0开始

若满足不等式f(xk+ \delta^m*dk)<=f(xk)+\sigma*\delta^m*gk'dk

则 mk=m,步长 \alphak=\delta^mk,若不满足上式,则m=m+1,直到满足上述不等式为止

步4:得到步长后令Xk+1=xk+ \alphak*dk,k=k+1,转步1

 具体代码如下:

1.修正牛顿法函数

function [x,val,k] = revisenm(fun,gfun,Hess,x0)
%功能:用修正牛顿法来求解无约束问题:minif(x)
%revisenm是修正的意思
%输入:fun,gfun,Hess分别是目标函数,梯度,二阶导数,x0是初始点
%输出:x,val分别是近似极小点和近似最优值,k是迭代次数
maxk=100;
rho=0.55;
sigma=0.4;
tau=0.0;%这是引进的阻尼因子
n=length(x0);%这是为了后面生成单位矩阵做铺垫
k=0;
e=1e-5;%精度要求
while(k<maxk)
    gk=feval(gfun,x0);
    muk=norm(gk)^(1+tau);
    if(norm(gk)<=e),break;end
    Gk=feval(Hess,x0);
    Ak=Gk+muk*eye(n);
    dk=-Ak\gk;
    m=0;
    mk=0;
    while(m<20)
        if(feval(fun,x0+rho^m*dk)<feval(fun,x0)+sigma*rho^m*gk'*dk);
           mk=m;
           break;
        end
       m=m+1;
    end
     x0=x0+dk*rho^m;
     k=k+1;      
end
x=x0;
val=feval(fun,x0);
end

2.目标函数

function f= fun(x)
%目标函数
f=100*(x(1)^2-x(2))^2+(x(1)-1)^2;
end

 3.目标函数梯度

function  g=gfun(x)
%目标函数的梯度
g=[400*x(1)*(x(1)^2-x(2))+2*(x(1)-1),-200*(x(1)^2-x(2))]';
end

4.目标函数Hess阵

function f = Hess(x)
%n=length(x);
%f=zero(n,n);
f=[1200*x(1)^2-400*x(2)+2,-400*x(1);
    -400*x(1),             200];
end

5.运行结果


 

 与上一篇文章比较,修正牛顿法的收敛速度比不上阻尼牛顿法,这是因为(不告诉你,噗)。

下一篇文章将要介绍共轭梯度法,共轭梯度法具有超线性的收敛速度,且算法比较简单,避免了Hess阵的计算,所以共轭梯度法是一种求解无约束问题的比较实用的算法,敬请后续更新...........

  • 8
    点赞
  • 53
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值