LN和BN

本文介绍了在深度学习中,LocalNormalization(LN)和BatchNormalization(BN)的区别。LN针对每个独立样本计算均值和方差进行归一化,而BN则按通道对整个batch的数据进行统计。两者在规范化数据分布上有所不同。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设batch为2,(2,3,256,256)这样的样本

LN比较直观就是在每个独立的样本上计算均值和方差,然后归一化。(2,3,256,256

归一化是将数据放缩到[0,1]或[-1,1]这样的区间内,标准化是让数据符合特定均值和方差的分布。

BN是按照一个batch中所有样本的通道计算均值和方差,它的计算单位是所有蓝色通道,所有黄色通道,所有红色通道。(2,3,256,256

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值