Task02:数据清洗及特征处理

数据清洗简述
我们拿到的数据通常是不干净的,所谓的不干净,就是数据中有缺失值,有一些异常点等,需要经过一定的处理才能继续做后面的分析或建模,所以拿到数据的第一步是进行数据清洗,本章我们将学习缺失值、重复值、字符串和数据转换等操作,将数据清洗成可以分析或建模的样子。

2.1 缺失值观察与处理
我们拿到的数据经常会有很多缺失值,比如我们可以看到Cabin列存在NaN,那其他列还有没有缺失值,这些缺失值要怎么处理呢

2.1.1 任务一:缺失值观察
(1) 请查看每个特征缺失值个数
(2) 请查看Age, Cabin, Embarked列的数据 以上方式都有多种方式,所以建议大家学习的时候多多益善

#方法一
df.info()
#方法二
df.isnull().sum()

2.1.2 任务二:对缺失值进行处理
(1)处理缺失值一般有几种思路

(2) 请尝试对Age列的数据的缺失值进行处理

(3) 请尝试使用不同的方法直接对整张表的缺失值进行处理

df.dropna().head(3)
df.fillna(0).head(3)

2.2.1 任务一:请查看数据中的重复值

df[df.duplicated()]
df.drop_duplicates().head()

2.3 特征观察与处理
我们对特征进行一下观察,可以把特征大概分为两大类:
数值型特征:Survived ,Pclass, Age ,SibSp, Parch, Fare,其中Survived, Pclass为离散型数值特征,Age,SibSp, Parch, Fare为连续型数值特征
文本型特征:Name, Sex, Cabin,Embarked, Ticket,其中Sex, Cabin, Embarked, Ticket为类别型文本特征。

数值型特征一般可以直接用于模型的训练,但有时候为了模型的稳定性及鲁棒性会对连续变量进行离散化。文本型特征往往需要转换成数值型特征才能用于建模分析。

2.3.1 任务一:对年龄进行分箱(离散化)处理
(1) 分箱操作是什么?

(2) 将连续变量Age平均分箱成5个年龄段,并分别用类别变量12345表示

(3) 将连续变量Age划分为[0,5) [5,15) [15,30) [30,50) [50,80)五个年龄段,并分别用类别变量12345表示

(4) 将连续变量Age按10% 30% 50 70% 90%五个年龄段,并用分类变量12345表示

(5) 将上面的获得的数据分别进行保存,保存为csv格式

#将连续变量Age平均分箱成5个年龄段,并分别用类别变量12345表示
df['AgeBand'] = pd.cut(df['Age'], 5,labels = ['1','2','3','4','5'])
df.head()
#将连续变量Age划分为[0,5) [5,15) [15,30) [30,50) [50,80)五个年龄段,并分别用类别变量12345表示
df['AgeBand'] = pd.cut(df['Age'],[0,5,15,30,50,80],labels = ['1','2','3','4','5'])
df.head(3)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值