微分方程计算机仿真国内外研究论文,微分方程数值解法毕业论文--开题报告.doc...

本文为一篇关于常微分方程数值解法的毕业论文开题报告,介绍了常微分方程在信息与计算科学中的重要性及其历史发展。报告涵盖了从17世纪至今的解法进展,包括莱布尼茨、欧拉等数学家的工作,以及20世纪以来在定性理论、稳定性理论和泛函微分方程等领域的发展。此外,还讨论了常微分方程在现代控制理论、生态学和偏微分方程等领域的应用。
摘要由CSDN通过智能技术生成

毕业论文开题报告

题 目: 微分方程的数值解法

院 系): 理学院

专 业: 信息与计算科学

学生姓名: 袁琪 学 号: 201010010219

指导教师: 肖烨讲师

年月日 毕 业 设 计(论 文)开 题 报 告

1.文献综述:结合毕业设计(论文)课题情况,根据所查阅的文献资料,每人撰写2500字以上的文献综述,文后应列出所查阅的文献资料。

常微分方程已有悠久的历史,而且继续保持着进一步发展的活力,主要原因是它的根源深扎在各种实际问题之中。常微分方程在常微分方程理论中占有重要地位,在工程技术及力学和物理学中都有十分广泛的应用。关于它的解结构己有十分完美的结论,但其求解方法却各有不同,因此.线性微分方程的求解方法成为常微分方程研究的热点问题之一。

1691年,莱布尼茨用分离变量法解决了形如ydx/dy=f(x)g(y)的方程。同年,他又解出了一阶齐次方程=f(y/x)。1693年,莱布尼茨给出了线性方程dy/dx=p(x)y+q(x)的通解表达式。1743年,欧拉定义了通解和特解的概念,同时还给出了恰当方程的解法和常系数线性齐次方程的特征根法。皮亚拿和比卡,他们先后于1875年和1876年给出了常微分方程的逐次逼近法。1881年,庞加莱创立了常微分方程的定性理论。同时,此理论的一系列课题成为动力系统的开端。1892年,数学家李雅普诺夫开创了微分方程运动稳定性理论研究。

20世纪30年代直至现在,是常微分方程各个领城迅速发展、形成各自相对独立的而又紧密联在一起的分支学科的时期。

1927-1945年间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值