计算机仿真中微分方程的数值解法

本文介绍了微分方程在游戏开发中的应用,特别是处理流体力学等复杂运动问题时的重要性。线性微分方程总是有解,而非线性微分方程可能无法精确求解。文章通过欧拉法和龙格-库塔法举例说明如何通过数值解法近似求解微分方程,这两种方法在游戏开发中常用于模拟物理效果。此外,还提到了线性多步法中的Adams-Bashforth方法作为另一种数值解法。
摘要由CSDN通过智能技术生成

 

微分方程可以分为线性微分方程与非线性微分方程两种。数学家研究得出的结论是,线性微分方程是必然有解的,而非线性微分方程会存在一些无论如何都无法求解的情况。 举一个游戏开发者身边的例子,这个例子涉及流体力学的情况。比如挥动一面旗帜,这时的运动就不能通过简单的函数来表示。在这些情况下,我们就需要使用微分方程的数值解法,即牺牲了一定程度的精确性的数值计算。

 

1. 欧拉法

通过逐步计算来求得微分方程的近似解。

举例,在运动学中,位置x与速度v之间的关系 dx/dt = v, 在欧拉法中可以近似为Δx/Δt=v, 这里的Δt是时间间隔,在游戏中一般是1/60秒。 将当前的位置表示为Xn, 上一次步长表示为Xn-1,则:

(Xn - Xn-1)/Δt=v,   即Xn = Xn-1 + v*Δt,

同理,速度与加速度之间的关系:

Vn = Vn-1 + a*Δt,

将两个式子并列起来:

这里第一个等式中的v可以直接使用第二个等式中的Vn或Vn-1。


2.龙格-库塔法(Runge-kutta methods)

 

https://wenku.baidu.com/view/792dc95e312b3169a451a4f8.html#

 


3. 线性多步法(Linear multistep method).

3.1 Adams-Bashforth方法

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

First Snowflakes

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值