欧氏距离_机器学习中的分类距离

c0c807ac7d3da0503f6d1d83df4fab11.png

作者 | 我的智慧生活

来源 | 咪付

生活中,距离通常是用于形容两个地方或两个物体之间的远近。在人工智能机器学习领域,常使用距离来衡量两个样本之间的相似度。

“物以类聚”

我们知道“物以类聚”通常用于比喻同类的东西经常聚在一起。机器学习中,距离就是遵循物以类聚的思想。通过两个样本特征数据进行距离计算后,得到的距离值越小,代表两者的相似度越高,属于同一类的可能性就越高。换句话说,距离能够决定样本的归属。

例如,在下图中,对于机器学习来说存在着两种距离:

(1)一是人物的空间位置距离;

(2)二是人物的性格爱好距离。

8844ae15f00cf8b13d89b77bacc2eb9a.png

对第1种距离来说,A与C较A与B近;而对第2种距离来说,则是A与B较近(爱打球)。A与B的爱好距离可通过如下计算:

我们用0—10分来表征每个人对打球的喜好程度,分数越高代表越爱打球,假设A、B、C三人的分值分别如下:

70103793d8c34d059799857465b97e8b.png

可以看出,A、B两人的分数较接近,A、B两人的分数差小于A、C两人的分数差,这个分数差值也就是机器学习中要计算的距离。通过比较得出,A、B两者的距离小,容易归为一类。当然,这里仅仅分析了爱打球这一个特征属性,机器学习中通常涉及多个属性进行综合计算和判断,也就是多维度分析。

物理几何空间距离

机器学习中,计算两个样本点之间的距离有多种不同的距离衡量方法,其中最常见的就是采用物理几何空间距离进行衡量。所谓物理几何空间距离就是点到点之间在物理空间中的真实距离。通俗地说,这类距离看得见、摸得着。常见的物理几何空间距离有:

欧氏距离

(Euclidean Distance)

曼哈顿距离

(Manhattan Distance)

切比雪夫距离

(Chebyshev Distance)

闵氏距离

(Minkowski Distance)

夹角余弦

(Cosine)

这几类物理几何空间距离的应用非常多,尤其是欧氏距离。

曼哈顿距离

我们首先从曼哈顿距离来形象了解机器学习中的距离,曼哈顿距离也是机器学习中常采用的一种距离。

我们知道曼哈顿是“世界的十字路口”,那里有非常多的十字交叉路口。

18c11a38b46390553c3b31f8893dd139.png

曼哈顿距离

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值