第七章 微分方程
1. 了解微分方程、解、通解、特解、初始条件等概念.
2. 掌握可分离变量方程以及一阶线性微分方程的解法, 会解齐次方程、Bernoulli方程.
3. 会用降阶法解三类高阶方程.
4. 理解二阶线性微分方程的解的结构.
5. 掌握求解二阶常系数齐次线性微分方程的特征根方法.
6. 会求常见自由项的二阶常系数非齐次线性微分方程.
第八章 矢量代数与空间解析几何
1. 理解空间直角坐标系,理解矢量的概念及其表示.
2. 掌握矢量的运算(线性运算、数量积、矢量积、混合积*),了解两个矢量垂直、平行的条件.
3. 了解单位矢量、方向数、方向余弦的坐标表示式,掌握用坐标表示式进行矢量运算的方法.
4. 掌握平面方程和直线方程及其求法,会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题,会求点到平面以及点到直线的距离.
5. 了解曲面方程和空间曲线方程的概念.
6. 了解常用二次曲面的方程及其图形,会求平面曲线绕坐标轴旋转所成的旋转曲面方程以及母线平行于坐标轴的柱面方程.
7. 了解空间曲线的参数方程和一般方程,了解并会求空间曲线关于坐标面的投影柱面及空间曲线在坐标面上的投影.
第九章 多元函数微分学
1. 了解二元函数极限与连续的概念.
2. 理解二元函数偏导数与全微分的概念
3. 掌握复合函数一阶偏导数的求法,会求复合函数二阶偏导数.
4. 会求隐函数一阶偏导数.
5. 会求曲线的切线和法平面以及曲面的切平面和法线的方程.
6. 了解方向导数与梯度的概念与计算方法.
7. 理解二元函数极值与条件极值的概念,了解求条件极值的拉格朗日乘数法并会用拉格朗日乘数法求实际问题的最值.
第十章 重积分
1. 理解二重积分、三重积分*的概念,了解其性质.
2. 掌握二重积分的计算方法(直角坐标、极坐标).
3. 掌握三重积分的计算方法(直角坐标、柱面坐标、球面坐标)*.
4. 会用重积分求一些几何量、物理量,如面积、体积、质量、重心、转动惯量等.
第十一章 曲线积分与曲面积分
1. 理解两类线面积分的概念,掌握两类线面积分的性质.
2. 掌握两类线积分以及两类面积分之间的联系和区别,会计算两类线面积分*.
3. 熟练掌握格林(Green)公式,会用平面曲线积分与路径无关的条件.
4. 掌握高斯(Gauss)公式*,斯托克斯(Stokes)公式*,会计算空间曲线积分.
5. 会用两类线面积分求一些几何量与物理量(如曲面面积,弧长,质量,重心,转动惯量,功等).
6. 了解散度,旋度及其计算方法*.
第十二章 无穷级数
1. 理解无穷级数收敛、发散及收敛级数的和的概念.了解无穷级数收敛的必要条件及基本性质.
2. 掌握几何级数与P-级数的收敛性.
3. 掌握正项级数的比较判别法、比値判别法和根値判别法.
4. 掌握交错级数的莱布尼兹判别法.
5. 了解绝对收敛与条件收敛的概念及绝对收敛与收敛的关系.
6. 了解函数项级数的收敛域及和函数的概念.
7. 掌握简单的幂级数的收敛区间和收敛域的求法.
8. 了解幂级数在收敛区间内的一些基本性质.
9. 了解函数展开成泰勒级数的条件.会利用几个常用函数的麦克劳林(Maclaurin)级数展开式及幂级数的基本性质将一些简单的函数展开成幂级数.
10.会利用幂级数的基本性质及一些已知幂级数的和函数求一些简单幂级数在收敛域内的和函数.
11.了解函数展开为傅里叶(Fourier)级数的狄利克雷(Dirichlet)条件,会将定义在(-π,π)上的函数展开为傅里叶级数,会将定义在(0,π)上的函数展开为正弦和余弦级数.