
今天我们来看看泰勒公式的一些综合应用,先来如何利用泰勒公式求极限,有一些极限十分复杂难看,对函数密集恐惧症患者刺激巨大,这时候看似复杂的泰勒展开反而会将其巧妙化简,让问题迎刃而解。并且在原则上,任何一个极限都是可以利用泰勒公式求解的,只是简单与复杂的区别。
泰勒公式求极限有流量的同学尽量看姑姑的讲解视频,没流量的赶紧找wifi,因为这里用文字描述可能会显得很肤浅!在看例题之前我们还是要先回忆那几个常用函数的麦克劳林展开式:



注:使用泰勒公式展开的阶数是:分子分母同时出现不为0(消不掉)的最小次数n,这样低于n阶的项都消掉了,而高于n阶的项极限值都为0;高阶无穷小的出现并不影响极限计算,高阶无穷小的项极限也都为0。


姑姑的讲解更细致哦
▼


- END -
![]()
版权说明:内容来自高数叔原创,文字、图片及视频已经申请版权保护,根据《中华人民共和国著作权法》、《中华人民共和国著作权法实施条例》、《信息网络传播权保护条例》等有关规定,如涉版权问题,请与我们联系,谢谢!


