二元函数泰勒公式例题_二元函数泰勒公式.pdf

§9.9 二元函数泰勒公式

一、问题的提出

一元函数的泰勒公式:

f (x ) = f (x ) + f ¢(x )(x - x )

0 0 0

f ¢¢(x ) 2 f ( n ) (x ) n

0 0

+ (x - x ) + L+ (x - x )

2 0 n! 0

f ( n+1) (x + q (x - x )) n+1

0 0

+ (x - x ) (0 < q < 1).

0

(n + 1)!

意义:可用n次多项式来近似表达函数f (x ) ,且

误差是当x fi x 时比(x - x )n 高阶的无穷小.

0 0

问题:能否用多个变量的多项式来近似表达一个

给定的多元函数,并能具体地估算出误差的大小.

即 设z = f (x , y )在点(x , y ) 的某 邻域内连续

0 0

且有直到n + 1阶的连续偏导数, (x 0 + h, y 0 + h)

为此邻域内任一点,能否把函数f (x0 + h, y 0 + k )

近似地表达为h = x - x ,k = y - y 的n 次多项

0 0

2 2 n

式,且误差是当r = h + k fi 0 时比r 高阶的

无穷小.

引入函数

F(t ) = f (x0 + ht , y 0 + kt ), (0 £ t £ 1).

显然 F(0) = f (x , y ), F(1) = f (x + h, y + k ).

0 0 0 0

利用 元函数的麦克劳林公式,得

1

¢ ¢¢

F(1) = F(0) + F (0) + F (0) + L

2!

1 1

+ F(n) (0) + F(n + 1) (q), (0 < q < 1). (*)

n! (n + 1)!

F(t )

由 的定义及多元复合函数的求导法则,可得

¢

F (t ) = hf (x + ht , y + kt ) + kf (x +

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值