数据集标签_分享(二)丨LiDAR点云数据

本文汇总了8个LiDAR点云数据集,包括WHU-TLS、Oakland 3-D、Paris-rue-Madame等,覆盖各种应用场景,适用于点云检测、分割和分类研究。每个数据集均附带详细信息和下载链接,为相关领域的研究提供宝贵资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

676199bac8d94f77659b12389fd2a3be.png

图片来源于网络

激光雷达技术(“光探测和测距”)在遥感界蓬勃发展,应用已较为广泛。例如空中激光扫描(ALS),可用于大规模建筑、道路和森林测量;地面激光扫描(TLS),可用于室内外环境中更详细但速度较慢的城市测量;移动激光扫描(MLS)精度比TLS低,但由于传感器安装在同一辆车上而具有更高的效率。

cf8e0075b8171c7a313a10706a50c298.png

图片来源于网络

随着这些技术发展,近年来可用的三维地理数据和处理技术数量激增。针对三维城市点云的分析,已有许多半自动和自动的方法。这是一个有着良好发展前景的研究领域。然而,对于最佳的检测、分割和分类方法还没有达成共识。因此,小编推荐8个LiDAR数据集供大家使用,希望不断提出新的检测、分割和分类方法。

本期分享的LiDAR数据集如下:

1.     WHU-TLS点云数据集

2.    Oakland 3-D点云数据集

3.    Paris-rue-Madame数据集

4.    IQmulus & TerraMobilita数据集

5.    District of Columbia数据集

6.    semantic3d数据集

7.    Paris-Lille-3D数据集

8.    DublinCity数据集

e6ce5cc9e94cbdd6d0a76fc0700783aa.png WHU-TLS点云数据集

武汉大学空间智能研究所课题组结合近十年来的数据积累,联合慕尼黑工业大学、芬兰大地所、挪威科技大学、代尔夫特理工大学发布全球最大规模和最多样化场景类型的TLS点云配准基准数据集。

本次公开的WHU-TLS基准数据集涵盖了地铁站、高铁站、山地、森林、公园、校园、住宅、河岸、文化遗产建筑、地下矿道、隧道等11种不同的环境,共包含115个测站、17.4亿个三维点以及点云之间的真实转换矩阵。此外,该基准数据集也为铁路安全运营、河流勘测和治理、森林结构评估、文化遗产保护、滑坡监测和地下资产管理等应用提供了典型有效数据。

0ef9d978785fae155ee81711a7683667.png

图1  WHU-TLS基准数据集

下载地址

http://3s.whu.edu.cn/ybs/en/benchmark.htm

参考文献:

Dong Z., Liang F., Yang B., Xu Y., Zang Y., Li J., Wang Y., Dai W., Fan H., Liang X., Stilla U., 2020. Registration of large-scale TLS Point Clouds: A Review and Benchmark. ISPRS J. Photogramm. Remote Sens. (In press)

e6ce5cc9e94cbdd6d0a76fc0700783aa.png Oakla nd 3-D点云数 据集

Oakland 3-D数据是使用Navlab11和侧视的LMS激光扫描仪收集的。数据采集点位于宾夕法尼亚州匹兹堡奥克兰市的芝加哥大学校园。数据以ascii格式提供:x, y, z标签置信度,每行一点,空格作为分隔符。还提供了相应的vrml文件(.wrl)和标签计数文件(.stats)。数据集由两个子集(part2,part3)组成,每个子集有自己的本地参考帧,其中每个文件包含10万个三维点。对训练集/验证集和测试集进行了筛选,并将其从44个标签重新映射到5个标签中。

9178fe41c8ceca5c21f3f8948c40b3b4.png

图2 Oakland 3-D点云数据集概览

下载地址

http://www.cs.cmu.edu/~vmr/datasets/oakland_3d/cvpr09/doc/

参考文献:Daniel Munoz, J. Andrew (Drew) Bagnell, Nicolas Vandapel and Martial HebertConferen

《python数据分析基础教程》 ⼀、导⼊常⽤numpy模块 from numpy import * //可以直接引⽤numpy中的属性XXX import numpy as np //引⽤numpy中的属性⼀定要np.XXX ⼆、常⽤函数以及转化关系 np.arange() 对应 python中的range() np.array() 对应 python中的list np.dtype() 对应 python中的type() tolist()函数可以将numpy数组转换成python列表: 列表转为数组: warning:Passing 1d arrays as data is deprecated in 0.17 and willraise ValueError in 0.19. Reshape your data either using X.reshape(-1, 1) if your data has a single feature or X.reshape(1, -1) if it contains a single sample. 这个warning主要就是有些函数参数应该是输⼊数组,当输⼊列表时就会警告!! 三、numpy中数组操作函数 数组组合函数 将ndarray对象构成的元组作为参数输⼊ (1)⽔平组合:hstack((a,b)) 或者concatenate((a,b),axis=1) (2)垂直组合:vstack((a,b)) 或者concatenate((a,b),axis=0) (3)列组合:column((a,b)) (4)⾏组合:row_stack((a,b)) 数组的分割函数 (1)⽔平分割:hsplit(a,3) 或者 split(a,3,axis=1) (2)垂直分割:vsplit(a,3) 或者 split(a,3,axis=0) 四、⽂件处理——os库 1.os.system() 运⾏shell命令 2.os.listdir(path) 获得⽬录中的内容 3.os.mkdir(path) 创建⽬录 4.os.rmdir(path) 删除⽬录 5.os.isdir(path) os.isfile(path) 判断是否为⽬录或者⽂件 6.os.remove(path) 删除⽂件 7.os.rename(old, new) 重命名⽂件或者⽬录 8.os.name 输出字符串指⽰正在使⽤的平台。如果是window 则⽤'nt'表⽰,对于Linux/Unix⽤户,它是'posix' 9.os.path.join() 在⽬录后⾯接上⽂件名 10.os.path.split() 返回⼀个路径的⽬录名和⽂件名 11.os.path.splitext() 分离⽂件名与扩展名 12.os.path.getsize(name) 获得⽂件⼤⼩,如果name是⽬录返回0L 14.os.path.abspath(")获得当前路径 15.os.path.dirname()返回⼀个路径的⽬录名 五、使⽤matplotlib画图(第九章 ) 前⾯⼏个列⼦主要讲解了通过多项式函数通过plt.plot()函数构建绘图,补充⼀下在机器学习中散点绘制 import numpy as np import matplotlib.pyplot as plt fig=plt.figure() ax=fig.add_subplot(111) x1=[2, 2.6, 2.8] y1=[2, 2.4, 3] x2=[4,5 ,6] y2=[1.3, 2, 1.2] ax.scatter(x1,y1,s=20,c='red') ax.scatter(x2,y2,s=50,c='blue') plt.show() 另外:做数据分析——sklearn库 from sklearn import preprocessing 数据预处理:归⼀化、标准化、正则化处理 from sklearn import preprocessing preprocessing.normalize(features, norm='l2')//正则化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值