loong_XL
这个作者很懒,什么都没留下…
展开
-
deepvariant 基因变异识别算法docker版使用
参考:https://github.com/google/deepvariant。原创 2022-11-26 12:28:20 · 1471 阅读 · 0 评论 -
Snakemake 工作流编写案例;airflow与Snakefile区别
参考:https://blog.csdn.net/yijiaobani/article/details/87972414Snakemake 是一个用于编写和管理工作流程的工具。它提供了一种类似于 Make 的语法,可以用来描述工作流程中的各个任务之间的依赖关系,并且可以根据需要自动调度这些任务的执行。Snakemake 通常用于生物信息学领域,但是它也可以用于其他领域。原创 2022-12-11 12:38:48 · 506 阅读 · 0 评论 -
生物信息基因处理工具 Biopython、pysam
参考:https://github.com/biopython/biopythonhttps://github.com/pysam-developers/pysam1、BiopythonDNA、RNA、蛋白数据处理参考:https://biopython.org/wiki/Documentation序列处理 Seqreverse_complement_rna和reverse_complement结果是与原序列反着的pip install pysampysam - 多种格式基因组数据(sa原创 2022-10-30 18:51:08 · 812 阅读 · 0 评论 -
生信基因序列比对相关软件安装fastqc、hisat2、bwa、samtools;GATK docker安装
流程:fastq格式处理==》sam格式比对结果==》bam格式(二进制sam)原创 2022-11-06 15:31:02 · 2557 阅读 · 0 评论 -
gseapy python包GO、KEGG富集(注释)分析
文档案例参考:https://gseapy.readthedocs.io/en/latest/gseapy_example.html#Over-representation-analysis-by-Enrichr-web-services安装:建议安装最新版(这里安装的1.04):https://github.com/zqfang/GSEApy/releases。原创 2023-03-19 17:28:55 · 3061 阅读 · 0 评论 -
单细胞空间组学 scanpy代码案例
参考:https://scanpy-tutorials.readthedocs.io/en/latest/spatial/basic-analysis.html。参考:https://blog.csdn.net/Hodors/article/details/126341127。anndata是一个Python包,用于处理内存和磁盘上的带注释的数据矩阵,位于pandas和xarray之间。图片数据一般存放这里。原创 2023-03-02 23:16:12 · 525 阅读 · 0 评论 -
scanpy 单细胞分析API接口使用案例;scvi单细胞特征提取算法包
参考:https://zhuanlan.zhihu.com/p/537206999scanpy python包主要分四个模块:1)read 读写模块、2)pp Preprocessing 预处理模块3)tl Tools工具箱模块,包括降维聚类等算法3)pl Plotting画图模块。原创 2023-02-27 22:01:37 · 870 阅读 · 0 评论 -
生物医药多组学与生物信息方法介绍
基因组学告诉你可能发生什么,转录组学和蛋白组学告诉你即将发生什么,而代谢组学告诉你正在发生什么。原创 2023-02-18 09:38:23 · 2147 阅读 · 0 评论 -
PyVCF 变异基因数据处理
PyVCF是一个用于处理VCF(Variant CallFormat)文件的python库。它提供了许多功能来读取,过滤和修改VCF文件中的变异PyVCF是一个用于读取和写入VCF格式文件的Python库。主要功能包括:1、读取VCF文件:PyVCF提供了一个vcf.Reader()函数,可以用来打开并读取VCF文件。读取后的文件可以进行遍历,每个元素是一个vcf.model._Record的实例2、写入VCF文件: PyVCF提供了一个vcf.Writer()函数,用来写入VCF文件。原创 2023-01-27 15:25:56 · 988 阅读 · 0 评论 -
Scanpy 单细胞测序基因分析
使用Scanpy的filter_genes函数过滤掉在少于3个细胞中表达量为0的基因,使用normalize_per_cell函数对每个细胞的基因表达数据进行标准化,使用log1p函数对基因表达数据进行log转换。3、降维: 使用Scanpy的tl.pca函数对数据进行降维,将高维的基因表达数据映射到二维或三维空间中。5、可视化: 使用Scanpy的pl.pca函数对降维后的数据进行可视化。4、聚类: 使用Scanpy的tl.louvain函数对数据进行聚类。原创 2023-01-27 14:41:16 · 2135 阅读 · 0 评论