SCALABLE PRIVATE LEARNING WITH PATE论文笔记

论文《SCALABLE PRIVATE LEARNING WITH PATE》提出改进的PATE方法(GNMANX),通过使用高斯噪声替代拉普拉斯噪声减少隐私泄露,同时引入自信聚合器提升准确性。在确保隐私保护的同时,GNMANX适用于更大规模学习任务,提高隐私与性能的平衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

该论文源代码可以在https://github.com/tensorflow/privacy/tree/master/research

找到,同时2017PATE也可以在上面找到。

前言:

阅读本文前,默认对2017ICLR的PATE方法有所了解,若有不了解PATE的读者,建议去翻阅上一篇博客。

方法:

该论文发表于2018的ICLR,是原作者对2017ICLR的PATE方法的改进。

简单的回顾一下PATE的工作。

 在机器学习领域中,模型的训练需要大量的数据。在一些医疗,金融等领域,这些数据通常有着高隐私的特点。比如一项疾病的预测,这类数据和病人的隐私息息相关。当前的一些攻击手段例如模型反演,成员推理攻击等可以从模型中反推出训练数据(一个样本在或者不在训练数据中,如一个人在一个患病数据集中,那么该患者患病的事实被泄露)。

PATE方法将私有数据集划分为N个不相交的数据集,然后独立于这些数据集训练不同的模型,得到N个教师模型。在部署经过训练的教师模型时,我们记录每个教师模型的预测结果,对预测结果进行聚合,并在聚合结果中加入符合差异隐私的拉普拉斯噪声,以保护隐私信息。然后,使用聚合教师模型对公共数据进行注释,将加入噪声后投票数量最高的一类作为公共数据的伪标签,并传递知识来训练学生模型。

然而,迄今为止,PATE仅在简单的分类任务&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值