该论文源代码可以在https://github.com/tensorflow/privacy/tree/master/research
找到,同时2017PATE也可以在上面找到。
前言:
阅读本文前,默认对2017ICLR的PATE方法有所了解,若有不了解PATE的读者,建议去翻阅上一篇博客。
方法:
该论文发表于2018的ICLR,是原作者对2017ICLR的PATE方法的改进。
简单的回顾一下PATE的工作。
在机器学习领域中,模型的训练需要大量的数据。在一些医疗,金融等领域,这些数据通常有着高隐私的特点。比如一项疾病的预测,这类数据和病人的隐私息息相关。当前的一些攻击手段例如模型反演,成员推理攻击等可以从模型中反推出训练数据(一个样本在或者不在训练数据中,如一个人在一个患病数据集中,那么该患者患病的事实被泄露)。
PATE方法将私有数据集划分为N个不相交的数据集,然后独立于这些数据集训练不同的模型,得到N个教师模型。在部署经过训练的教师模型时,我们记录每个教师模型的预测结果,对预测结果进行聚合,并在聚合结果中加入符合差异隐私的拉普拉斯噪声,以保护隐私信息。然后,使用聚合教师模型对公共数据进行注释,将加入噪声后投票数量最高的一类作为公共数据的伪标签,并传递知识来训练学生模型。
然而,迄今为止,PATE仅在简单的分类任务&#