直方图处理详细介绍

本文详细介绍了直方图在图像处理中的重要性,包括直方图的定义和统计特性,以及如何使用Numpy和OpenCV绘制直方图。通过直方图可以分析图像灰度级分布,进而进行图像处理。文中提到了OpenCV中计算直方图的cv2.calcHist()函数,并展示了使用matplotlib库绘制直方图的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

直方图处理

直方图是图像处理过程中的一种非常重要的分析工具。直方图从图像内部灰度级的角度对图像进行表述,包含十分丰富而重要的信息。从直方图的角度对图像进行处理,可以达到增强图像显示效果的目的。

1、 直方图的含义
  • 从统计的角度讲,直方图是图像内灰度值的统计特性与图像灰度值之间的函数,直方图统计图像内各个灰度级出现的次数。
  • 从直方图的图形上观察,横坐标是图像中各像素点的灰度级,纵坐标是具有该灰度级(像素值)的像素个数

一般情况下,我们把直线图和直方图都称为直方图。

在实际处理中,图像直方图的x轴区间一般是[0, 255],对应的是8位位图的256个灰度级;y轴对应的是具有相应灰度级的像素点的个数。

虽然8位的图像都具有256个灰度级(每一个像素可以有256个灰度值),但是属于不同灰度级的像素数量是很不一样的。

有时为了便于表示,也会采用归一化直方图。在归一化直方图中,x轴仍然表示灰度级;y轴不再表示灰度级出现的次数,而是灰度级出现的频率

在OpenCV的官网上,特别提出了要注意三个概念:DIMS、BINS、RANGE。

● DIMS:表示在绘制直方图时,收集的参数的数量。一般情况下,直方图中收集的数据只有一种,就是灰度级。因此,该值为1。

● RANGE:表示要统计的灰度级范围,一般为[0, 255]。0对应的是黑色&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值