牛顿法推导

"牛顿法是一种有效的求解多元函数极值的迭代方法。通过泰勒公式展开,保留前三项,可以得到迭代公式。迭代过程中,γgammaγ参数用于控制迭代速度,确保每次迭代步长适中,忽略高阶无穷小影响。该方法广泛应用于最优化问题,寻找函数的最小值或最大值。"
摘要由CSDN通过智能技术生成

牛顿法推导

目的

牛顿法的目的是为了求目标函数的最小或最大值。

推导

对于任意多元函数,都可以通过泰勒公式展开,牛顿法需要泰勒公式的前三项,推导过程如下,其中 X X X ( x 1 , x 2 , … , x n ) T (x_1,x_2,…,x_n)^T (x1,x2,,xn)T
请添加图片描述

这里 γ \gamma γ主要是控制迭代速度,一般要设置的比较小,主要是为了保证 X k + 1 − X k X_{k+1}-X_k Xk+1Xk足够小,这样前面提到的高阶无穷小才能被忽略。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值