python 计量经济学案例分析_Python数据分析案例运用KMeans聚类分析广告效果

        在本案例中,我们通过各类广告渠道90天内额日均UV,平均注册率、平均搜索率、访问深度、平均停留时长、订单转化率、投放时间、素材类型、广告类型、合作方式、广告尺寸和广告卖点等特征,将渠道分类,找出每类渠道的重点特征,为加下来的业务讨论和数据分析提供支持。 

导入分析过程所需类库

import pandas as pd  import matplotlib.pyplot as pltimport matplotlib,osimport numpy as npimport seaborn as snsfrom sklearn.preprocessing import OneHotEncoder #文本向量化from sklearn.preprocessing import MinMaxScaler #数据标准化from sklearn.cluster import KMeans #聚类算法模型from sklearn.metrics import silhouette_score  #轮廓系数import warningswarnings.filterwarnings("ignore")matplotlib.rcParams['font.sans-serif'] = ['SimHei']matplotlib.rcParams['axes.unicode_minus']=Falsesns.set(font='SimHei')

导入原始数据

data = pd.read_csv('ad_performance.csv').iloc[:,1:]data.head()

37f4bb6fd50c184e60ed6ef2e15fd3aa.png

查看数据基本信息

print("\n"+"{:*^40}".format(' Data Info ')+"\n")print(data.info())print("\n"+"{:*^40}".format(' Null ')+"\n")print(data.isnull().sum())print("\n"+"{:*^40}".format(' Duplicated ')+"\n")print(data.duplicated().value_counts())print("\n"+"{:*^40}".format(' Shape ')+"\n")print(data.shape)out:************** Data Info ***************RangeIndex: 889 entries, 0 to 888Data columns (total 13 columns):渠道代号      889 non-null object日均UV      889 non-null float64平均注册率     889 non-null float64平均搜索量     889 non-null float64访问深度      889 non-null float64平均停留时间    887 non-null float64订单转化率     889 non-null float64投放总时间     889 non-null int64素材类型      889 non-null object广告类型      889 non-null object合作方式      889 non-null 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值