matalb中的wden函数_一维信号小波阈值去噪 - 全文

本文详细介绍了Matlab中利用wden函数进行一维信号小波阈值去噪的原理和步骤,包括小波阈值处理理论、阈值函数的选择、阈值确定、去噪策略及多级分解与重构。通过核心库函数wnoisest、wavedec、waverec和wdencmp的解释,并结合实例代码展示了软阈值和硬阈值去噪的效果。
摘要由CSDN通过智能技术生成

1、小波阈值处理基本理论

所谓阈值去噪简而言之就是对信号进行分解,然后对分解后的系数进行阈值处理,最后重构得到去噪信号。该算法其主要理论依据是:小波变换具有很强的去数据相关性,它能够使信号的能量在小波域集中在一些大的小波系数中;而噪声的能量却分布于整个小波域内。因此,经小波分解后,信号的小波系数幅值要大于噪声的系数幅值。可以认为,幅值比较大的小波系数一般以信号为主,而幅值比较小的系数在很大程度上是噪声。于是,采用阈值的办法可以把信号系数保留,而使大部分噪声系数减小至零。小波阈值收缩法去噪的具体处理过程为:将含噪信号在各尺度上进行小波分解,设定一个阈值,幅值低于该阈值的小波系数置为0,高于该阈值的小波系数或者完全保留,或者做相应的“收缩(shrinkage)”处理。最后将处理后获得的小波系数用逆小波变换进行重构,得到去噪后的信号。

2、阈值函数的选取

小波分解阈值去噪中,阈值函数体现了对超过和低于阈值的小波系数不同处理策略,是阈值去噪中关键的一步。设w表示小波系数,T为给定阈值,sign(*)为符号函数,常见的阈值函数有:

硬阈值函数:(小波系数的绝对值低于阈值的置零,高于的保留不变)

软阈值函数:(小波系数的绝对值低于阈值的置零,高于的系数shrinkage处理)

式(3-8)和式(3-9)用图像表示即为:

值得注意的是࿱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值