介绍稳定匹配

一、稳定匹配的定义

1、稳定分配方案

这里以硕士研究生与导师之间的双向选择为例来说明稳定匹配问题。
假设师生分配问题中一个老师可以带三个学生,而一个学生只能跟一个导师。这里我们可能提前联系的导师有好几个,可能答应了某个导师后又反悔,导师也可能被很多学生选择,所以这里就涉及到一个分配问题。
若最后的分配方案能保证:
(1)如果有学生想要换导师,那么没有教师愿意接受这名学生。
(2)如果有教师想要换学生,那么没有学生愿意跟随这位教师。
那么就称此师生分配方案是稳定的。
我们可以对上述稳定分配方案的定义做进一步形式化的处理,假设学生对于想选的教师会有一个优先排名,而教师对于想要招的学生也会有一个优先排名。
如果对每一个教师P和每一个没有跟随教师P的学生S,至少出现下列两种情形之一:
(1)教师P对他已经接受的每位学生都比对学生S更满意;
(2)学生S对他目前的导师比对教师P更满意。
则称此方案为稳定分配方案。

2、不稳定分配方案

如果至少存在一个教师P和一个没有跟随教师P的学生S,使得以下两点均满足:
(1)教师P对学生s至少比他所接受的学生中的一位更满意;
(2)学生S对教师P比对他目前的导师更满意。
那么就说明师生分配方案是不稳定的。

二、稳定匹配的求解

1、G-S算法说明

这里引入G-S算法。
求解稳定的师生分配方案的G-S算法叙述如下:
每次只选择一位学生S,让他(她)按照自己的优先表从高到低依次找还没有面谈过的教师面谈。为公平起见,我们假设这位学生是通过完全随机的方式选出来的。如果与他(她)面谈的教师目前没有候选的学生,那么这位教师最安全的做法就是把这位学生列为候选学生,即使这个学生未必是这位老师的优先表中靠前的学生,因为每位教师必须要带一名学生。如果这名教师已经有了候选学生S’,那么他将应该比较学生S和学生S’ ,并从中挑选一个作为他的候选学生。按照这一程序,学生S必然在这一轮面谈后被某个教师考虑为候选学生。
然后,再随机选择一位自由的(即还没有成为候选对象的)学生,让他(她)按照自己的优先表从高到低依次找自己还没有面谈过的教师面谈,直到成为候选学生。这一迭代过程一直进行下去,直到所有学生都成为候选学生或每一个自由的学生都与所有教师面谈过为止。
在研究上述算法性质时,首先要注意到,尽管只有N个学生,该算法一般说来未必在N步之后就终止。这是因为,已经成为候选学生的人有可能在后面的某次迭代中被另一位同学顶替掉而再次成为完全自由的学生。因此,针对该算法我们依次需要考察如下问题:该算法是否会终止?如果会,迭代多少步之后终止?该算法是否能够得到一个完全匹配?如果能,这个完全匹配是否一定为稳定匹配?在回答这些问题之前,首先注意到算法的几个似乎是让学生越来越沮丧,教师越来越高兴的基本事实:
(1)教师P从第一次有学生去和他面谈开始,就一直会有候选学生,而且他的候选学生只会越变越好(按照教师P的优先表);
(2)学生S可能会在候选学生和自由学生状态之间交替,而且他(她)去面谈的教师只会越变越差(按照学生S的优先表)。
(3)如果学生S在算法的某一步是自由的,那么此时,必至少存在一位该学生没有面谈过的教师。
事实三意味着算法终止的唯一条件为所有的学生都是候选学生,即找不到自由的学生。

2、G-S算法定理

定理1: G-S算法在至多 N 2 ^2 2次迭代之后终止,且算法终止时所得到的集合是一个完全匹配。
定理2: G-S算法终止时所得到的集合 Ω \Omega Ω一定是一个稳定匹配。
定理3: G-S算法所有执行得到的都是对学生最满意、对教师最不理想的稳定匹配。
定理4 一个左右节点数相同的二分图存在完全匹配的充要条件是它不包含抑制集。

三、稳定匹配的公平性

(1)从学生角度看,将导致学生之间的公平性问题:在算法执行过程中,是否早被选上的学生更有利?
(2)因为算法的两个基本事实是学生越来越沮丧,教师越来越高兴,那么会导致学生与教师之间的公平性问题:该算法总体上知否对教师更有利?
对于第一个公平性问题,学生完全不必担心:算法的每次执行得到的都是同一个集合n。对于第二个公平性问题,学生更加不必担心:这一算法得到的结果是对学生最有利的。
由此也得出了定理3。

四、完全匹配存在的条件

上述师生分配问题有一个前提就是每一个学生与每一个教师都有配对的可能性。但如果教师只愿意接受某几个学生,学生也只愿意跟随某几个导师,这种情况下就可能不存在完全匹配。
所以完全匹配是存在一定条件的。
在这里插入图片描述

假设有5个教师和5个学生,他们的意愿用上图左边的图表示。例如,教师1只愿意在学生1和学生2中做选择。此时,我们很容易发现并不存在完全匹配:学生1、学生2和学生3这3个学生只愿意在教师1和教师2这两个教师之间做选择。我们称学生1、学生2和学生3这了个学生的集合为一个抑制集,因为他们与二分图另一端的连接抑制了完全匹配的形成。
一般地,对于二分图右端的一组节点S,如果左端某个节点有边与S中的某个节点连接,我们就称该节点为S的邻居节点。S的所有邻居节点的集合记为N(S)。如果S中的节点数目严格大于N(S)中的节点数目,则右端的节点集合S是抑制的。
显然,只要一个二分图中存在抑制集,那么就不存在完全匹配。现在的问题是:还有哪些其他因素导致不存在完全匹配?是否会存在很多这样的因素?定理4表明,存在抑制集是不存在完全匹配的唯一理由。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值