幂律分布及性质

一、幂律分布及其检验

在上篇文章中说到,许多实际网络的度分布曲线都具有长尾形状。那么什么样的分布函数具有长尾形状呢?答案就是幂律分布。

1、幂律分布定义

很多实际网络的度分布并不服从具有均匀特征的泊松分布,而是可以较好的用如下形式的幂律分布来表示:

其中 λ \lambda λ>0为幂指数,通常取值在2与3之间。

2、幂律分布的检验

2.1 双对数坐标系中的直线

判断一个网络的度分布P(k)是否是幂律分布可以看双对数坐标系中的直线。
假设我们要验证是否存在比例常数C和幂指数 λ \lambda λ,使得近似的有
在这里插入图片描述
可以对上式两边取对数,则有
在这里插入图片描述
这说明lnP(k)是lnk的线性函数,斜率为- λ \lambda λ,lnC为纵轴的截距。因此,直观上,如果根据给定的数据,在双对数坐标系中看到近似有一条直线,那么就可以推断所处理的数据近似符合幂律,并且可以从该直线的斜率中得到对应的幂指数。

2.2 累积度分布

直接在双对数坐标系的度分布图中判断是否存在幂律还有另外一个问题:即使我们说网络的度分布在某段范围内服从幂律,实际情形往往会在其中的一些度值处(特别是尾部的一些地方)有明显的类似于噪声扰动的偏差。一种常见的光滑化的处理方法是绘制累积度分布P k _k k,它表示的是度不小于k的节点在整个网络中所占的比例,也就是网络中随机选取的一个节点的度不小于k的概率,即有
在这里插入图片描述
有些研究也把度小于k的节点在整个网络中所占的比例1-P k _k k称为累积度分布。
如果一个网络的度分布为幂律分布,那么累积度分布函数近似符合幂指数为 λ \lambda λ-1的幂律:
在这里插入图片描述
注意到由于当k值较大时幂函数变化较为缓慢,所以上式中把离散的求和用连续的积分来近似。为了保证积分收敛 ,这里假设 λ \lambda λ>1。

二、幂律分布的性质

1、无标度性质

定理: 考虑一个概率分布函数 f(x),假设f(1)f’(1)≠0。如果对任意给定常数a,存在常数b使得函数f(x)满足如下“无标度条件”:f(ax) = bf(x),那么必有f(x)=f(1)x − λ ^{-\lambda} λ λ \lambda λ=-f’(1)/f(1)。也就是说,幂律分布函数是唯一满足无标度条件的概率分布函数。

2、归一化

幂函数P(k)=CK − λ ^{-\lambda} λ要成为概率分布必须满足如下基本条件:
在这里插入图片描述
此外,度值k不能为0,否则p 0 _0 0为无穷大。因此,我们不妨假设幂律分布是当k>=k m i n _{min} min>0时才成立,于是有:
在这里插入图片描述
从而得到:
在这里插入图片描述
其中
在这里插入图片描述
成为广义 ζ \zeta ζ函数,
在这里插入图片描述
称为标准黎曼 ζ \zeta ζ函数。通过把求和用积分近似,我们可以用如下公式近似计算归一化常数:
在这里插入图片描述
从而幂律律分布可以写为:
在这里插入图片描述
相应的,累积度分布可以写为:
在这里插入图片描述

3、矩的性质

定理:幂律分布P(k)=CK − λ ^{-\lambda} λ存在有限的m阶矩的充要条件为 λ \lambda λ>m+1

  • 2
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值