原问题与对偶问题

本文探讨了优化问题中对偶问题的概念及其与原问题的关系。特别关注于当间距G为0时的情况,并介绍了强对偶定理及KKT条件的应用。

原问题

在这里插入图片描述

对偶问题

在这里插入图片描述

原问题与对偶问题之间的关系

在这里插入图片描述
原问题与对偶问题的间距G:
我们称f()
对于某些特定的优化问题,可以证明G=0。

强对偶定理

若f(w)为凸函数,且g(w)=Aw+b,h(w)=cw+d。则此优化问题的原问题与对偶问题间距为0。
在这里插入图片描述
我们把这个条件称为KKT条件。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值