线性规划原问题与对偶问题

1. 对偶问题

任一线性规划问题都存在另一与之伴随的线性规划问题,它们组成一对互为对偶的线性规划问题。

线性规划的对偶问题与原问题互为对偶,线性规划的原问题与对偶问题地位具有对称关系。

2. 原问题和对偶问题的对应关系

在这里插入图片描述

3. 举例

原问题:
max ⁡ z = c x s.t.  { A x ≤ b x ≥ 0 \max z = \bm{cx} \\ \text{s.t. } \left\lbrace \begin{array}{ll} \bm{Ax} \leq \bm{b} \\ \bm{x} \geq 0 \\ \end{array} \right. maxz=cxs.t. {Axbx0

对偶问题:
min ⁡ w = y b s.t.  { y A ≥ c y ≥ 0 \min w = \bm{yb} \\ \text{s.t. } \left\lbrace \begin{array}{ll} \bm{yA} \geq \bm{c} \\ \bm{y} \geq 0 \\ \end{array} \right. minw=ybs.t. {yAcy0


原问题:
max ⁡ z = 3 x 1 + 5 x 2 s.t.  { x 1 ≤ 4 , 2 x 2 ≤ 12 3 x 1 + 2 x 2 ≤ 18 x 1 ≥ 0 , x 2 ≥ 0 \max z = 3x_1 + 5x_2 \\ \text{s.t. } \left\lbrace \begin{array}{ll} x_1 \leq 4, \\ 2x_2 \leq 12 \\ 3x_1 + 2x_2 \leq 18 \\ x_1 \geq 0, x_2 \geq 0 \\ \end{array} \right. maxz=3x1+5x2s.t. x14,2x2123x1+2x218x10,x20
其中,约束方程系数矩阵 A \bm{A} A,约束方程常数矩阵 b \bm{b} b,目标方程系数矩阵 c \bm{c} c,变量 x \bm{x} x

A = [ 1 0 0 2 3 2 ] , b = [ 4 12 18 ] , c = [ 3 5 ] , x = [ x 1 x 2 ] \bm{A} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 3 & 2 \\ \end{bmatrix}, \bm{b} = \begin{bmatrix} 4 \\ 12 \\ 18 \\ \end{bmatrix}, \bm{c} = \begin{bmatrix} 3 & 5 \end{bmatrix}, \bm{x} = \begin{bmatrix} x_1 \\ x_2 \\ \end{bmatrix} A=103022,b=41218,c=[35],x=[x1x2]

对偶问题:
y = [ y 1 y 2 y 3 ] , \bm{y} = \begin{bmatrix} y_1 & y_2 & y_3 \\ \end{bmatrix}, y=[y1y2y3],

min ⁡ w = 4 y 1 + 12 y 2 + 18 y 3 s.t.  { y 1 + 3 y 3 ≥ 3 , 2 y 2 + 2 y 3 ≥ 5 y 1 ≥ 0 , y 2 ≥ 0 , y 3 ≥ 0 \min w = 4y_1 + 12y_2 + 18y_3 \\ \text{s.t. } \left\lbrace \begin{array}{ll} y_1 + 3y_3 \geq 3, \\ 2y_2 + 2y_3 \geq 5 \\ y_1 \geq 0, y_2 \geq 0, y_3 \geq 0 \\ \end{array} \right. minw=4y1+12y2+18y3s.t. y1+3y33,2y2+2y35y10,y20,y30

参考

  1. 《运筹学》 第四版 徐玖平,胡知能 编著
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值