1. 对偶问题
任一线性规划问题都存在另一与之伴随的线性规划问题,它们组成一对互为对偶的线性规划问题。
线性规划的对偶问题与原问题互为对偶,线性规划的原问题与对偶问题地位具有对称关系。
2. 原问题和对偶问题的对应关系
3. 举例
原问题:
max
z
=
c
x
s.t.
{
A
x
≤
b
x
≥
0
\max z = \bm{cx} \\ \text{s.t. } \left\lbrace \begin{array}{ll} \bm{Ax} \leq \bm{b} \\ \bm{x} \geq 0 \\ \end{array} \right.
maxz=cxs.t. {Ax≤bx≥0
对偶问题:
min
w
=
y
b
s.t.
{
y
A
≥
c
y
≥
0
\min w = \bm{yb} \\ \text{s.t. } \left\lbrace \begin{array}{ll} \bm{yA} \geq \bm{c} \\ \bm{y} \geq 0 \\ \end{array} \right.
minw=ybs.t. {yA≥cy≥0
原问题:
max
z
=
3
x
1
+
5
x
2
s.t.
{
x
1
≤
4
,
2
x
2
≤
12
3
x
1
+
2
x
2
≤
18
x
1
≥
0
,
x
2
≥
0
\max z = 3x_1 + 5x_2 \\ \text{s.t. } \left\lbrace \begin{array}{ll} x_1 \leq 4, \\ 2x_2 \leq 12 \\ 3x_1 + 2x_2 \leq 18 \\ x_1 \geq 0, x_2 \geq 0 \\ \end{array} \right.
maxz=3x1+5x2s.t. ⎩⎪⎪⎨⎪⎪⎧x1≤4,2x2≤123x1+2x2≤18x1≥0,x2≥0
其中,约束方程系数矩阵
A
\bm{A}
A,约束方程常数矩阵
b
\bm{b}
b,目标方程系数矩阵
c
\bm{c}
c,变量
x
\bm{x}
x
A = [ 1 0 0 2 3 2 ] , b = [ 4 12 18 ] , c = [ 3 5 ] , x = [ x 1 x 2 ] \bm{A} = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 3 & 2 \\ \end{bmatrix}, \bm{b} = \begin{bmatrix} 4 \\ 12 \\ 18 \\ \end{bmatrix}, \bm{c} = \begin{bmatrix} 3 & 5 \end{bmatrix}, \bm{x} = \begin{bmatrix} x_1 \\ x_2 \\ \end{bmatrix} A=⎣⎡103022⎦⎤,b=⎣⎡41218⎦⎤,c=[35],x=[x1x2]
对偶问题:
y
=
[
y
1
y
2
y
3
]
,
\bm{y} = \begin{bmatrix} y_1 & y_2 & y_3 \\ \end{bmatrix},
y=[y1y2y3],
min w = 4 y 1 + 12 y 2 + 18 y 3 s.t. { y 1 + 3 y 3 ≥ 3 , 2 y 2 + 2 y 3 ≥ 5 y 1 ≥ 0 , y 2 ≥ 0 , y 3 ≥ 0 \min w = 4y_1 + 12y_2 + 18y_3 \\ \text{s.t. } \left\lbrace \begin{array}{ll} y_1 + 3y_3 \geq 3, \\ 2y_2 + 2y_3 \geq 5 \\ y_1 \geq 0, y_2 \geq 0, y_3 \geq 0 \\ \end{array} \right. minw=4y1+12y2+18y3s.t. ⎩⎨⎧y1+3y3≥3,2y2+2y3≥5y1≥0,y2≥0,y3≥0
参考
- 《运筹学》 第四版 徐玖平,胡知能 编著