keras实现-台大李宏毅深度学习作业HW3-基于CNN(卷积神经网络)的面部表情识别

一、项目说明:

          卷积神经网络(CNN)在图像识别中已经获得了很大的进展,此项目旨在使用TensorFlow的keras接口来搭建CNN模型,来体验一下CNN的作用。对已有的数据集 train.csv,训练处一个分类模型,然后用该模型来判断每一个样本图片的表情。

数据集介绍:

 

           (1)该数据集为一个CSV文件,是一个28710行,2305列的数据。

           (2) 第一行为描述信息,“label“和“feature“,剩下的每一行都是样本。

             (3)    这个数据集总共有7种标签,对应不同的表情。分别是:0代表生气,1代表恶心,2代表恐惧,3高兴,4难过,5惊讶,6木讷。

           (4) 对于每一个样本,第一列是样本的标签,数值在(0-6之间)。其余2304(=48*48)列是图片的像素值,每个像素值取值范围在(0-255之间)。

          (5) 数据集地址:https://pan.baidu.com/s/1hwrq5Abx8NOUse3oew3BXg ,提取码:ukf7 。         

 

数据预处理:

           (1)、用pandas

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值