pandas dataframe的各种合并

pandas作者Wes McKinney 在【PYTHON FOR DATA ANALYSIS】中对pandas的方方面面都有了一个权威简明的入门级的介绍,但在实际使用过程中,我发现书中的内容还只是冰山一角。谈到pandas数据的行更新、表合并等操作,一般用到的方法有concat、join、merge。但这三种方法对于很多新手来说,都不太好分清使用的场合与用途。今天就pandas官网中关于数据合并和重述的章节做个使用方法的总结。

  • 文中代码块主要有pandas官网教程提供。

1 concat

concat函数是在pandas底下的方法,可以将数据根据不同的轴作简单的融合

 
 
  • 1
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
       keys=None, levels=None, names=None, verify_integrity=False)
 
 
  • 1
  • 2

参数说明
objs: series,dataframe或者是panel构成的序列lsit
axis: 需要合并链接的轴,0是行,1是列
join:连接的方式 inner,或者outer

其他一些参数不常用,用的时候再补上说明。

1.1 相同字段的表首尾相接

这里写图片描述

# 现将表构成list,然后在作为concat的输入
In [4]: frames = [df1, df2, df3]

In [5]: result = pd.concat(frames)
 
 
  • 1
  • 2
  • 3
  • 4

要在相接的时候在加上一个层次的key来识别数据源自于哪张表,可以增加key参数

In [6]: result = pd.concat(frames, keys=['x', 'y', 'z'])
 
 
  • 1

效果如下

这里写图片描述

1.2 横向表拼接(行对齐)

1.2.1 axis

当axis = 1的时候,concat就是行对齐,然后将不同列名称的两张表合并

In [9]: result = pd.concat([df1, df4], axis=1)
 
 
  • 1

这里写图片描述

1.2.2 join

加上join参数的属性,如果为’inner’得到的是两表的交集,如果是outer,得到的是两表的并集。

In [10]: result = pd.concat([df1, df4], axis=1, join='inner')
 
 
  • 1

这里写图片描述

1.2.3 join_axes

如果有join_axes的参数传入,可以指定根据那个轴来对齐数据
例如根据df1表对齐数据,就会保留指定的df1表的轴,然后将df4的表与之拼接

In [11]: result = pd.concat([df1, df4], axis=1, join_axes=[df1.index])
 
 
  • 1

这里写图片描述

1.3 append

append是series和dataframe的方法,使用它就是默认沿着列进行凭借(axis = 0,列对齐)

 
 
  • 1
In [12]: result = df1.append(df2)
 
 
  • 1

这里写图片描述

1.4 无视index的concat

如果两个表的index都没有实际含义,使用ignore_index参数,置true,合并的两个表就睡根据列字段对齐,然后合并。最后再重新整理一个新的index。
这里写图片描述

1.5 合并的同时增加区分数据组的键

前面提到的keys参数可以用来给合并后的表增加key来区分不同的表数据来源

1.5.1 可以直接用key参数实现

In [27]: result = pd.concat(frames, keys=['x', 'y', 'z'])
 
 
  • 1

这里写图片描述

1.5.2 传入字典来增加分组键

In [28]: pieces = {'x': df1, 'y': df2, 'z': df3}

In [29]: result = pd.concat(pieces)
 
 
  • 1
  • 2
  • 3

这里写图片描述

1.6 在dataframe中加入新的行

append方法可以将 series 和 字典就够的数据作为dataframe的新一行插入。
这里写图片描述

In [34]: s2 = pd.Series(['X0', 'X1', 'X2', 'X3'], index=['A', 'B', 'C', 'D'])

In [35]: result = df1.append(s2, ignore_index=True)
 
 
  • 1
  • 2
  • 3

表格列字段不同的表合并

如果遇到两张表的列字段本来就不一样,但又想将两个表合并,其中无效的值用nan来表示。那么可以使用ignore_index来实现。

 
 
  • 1

这里写图片描述

In [36]: dicts = [{'A': 1, 'B': 2, 'C': 3, 'X': 4},
   ....:          {'A': 5, 'B': 6, 'C': 7, 'Y': 8}]
   ....: 

In [37]: result = df1.append(dicts, ignore_index=True)
 
 
  • 1
  • 2
  • 3
  • 4
  • 5

下一章,我们将继续介绍pandas中其他进行数据合并和重塑的方法模块——join & merging

### 回答1: pandas dataframe合并是指将两个或多个数据框按照一定的规则合并成一个新的数据框。合并的规则可以是按照某一列的值进行合并,也可以是按照索引进行合并pandas提供了多种合并方式,如concat、merge、join等,可以根据具体的需求选择合适的方法进行合并合并后的数据框可以用于数据分析、可视化等多种数据处理任务。 ### 回答2: 在数据分析和处理中,数据的合并是一项非常重要的操作。Pandas中提供了多种方法来合并DataFrameDataFrame合并通常包括水平合并和垂直合并。 1.水平合并 水平合并是将两个或多个DataFrame按列连接起来,使它们的行对齐。在Pandas中,主要有四种方法可以实现水平合并concat()、merge()、join()、append()。 1.1. concat() concat()函数是Pandas中最常用的函数之一,主要是对数据进行连接(concatenation)。concat()函数常常用于拼接Series或DataFrame。在Pandas中,concat()函数支持水平拼接(沿着列)和垂直拼接(沿着行)两种方式。 例如: ``` import pandas as pd df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}, index=[0, 1, 2, 3]) df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'], 'B': ['B4', 'B5', 'B6', 'B7'], 'C': ['C4', 'C5', 'C6', 'C7'], 'D': ['D4', 'D5', 'D6', 'D7']}, index=[4, 5, 6, 7]) frames = [df1, df2] result = pd.concat(frames, axis=1, sort=False) print(result) ``` 输出结果为: ``` A B C D A B C D 0 A0 B0 C0 D0 NaN NaN NaN NaN 1 A1 B1 C1 D1 NaN NaN NaN NaN 2 A2 B2 C2 D2 NaN NaN NaN NaN 3 A3 B3 C3 D3 NaN NaN NaN NaN 4 NaN NaN NaN NaN A4 B4 C4 D4 5 NaN NaN NaN NaN A5 B5 C5 D5 6 NaN NaN NaN NaN A6 B6 C6 D6 7 NaN NaN NaN NaN A7 B7 C7 D7 ``` 1.2. merge() merge()函数可以把两个表按照指定的列或索引进行合并,类似于SQL中的join操作。merge()函数支持不同方式的连接:内连接(inner)、左连接(left)、右连接(right)和全连接(outer)。 例如: ``` import pandas as pd df1 = pd.DataFrame({'key': ['foo', 'bar', 'baz', 'foo'], 'value': [1, 2, 3, 4]}) df2 = pd.DataFrame({'key': ['foo', 'bar', 'qux', 'foo'], 'value': [5, 6, 7, 8]}) result = pd.merge(df1, df2, on='key') print(result) ``` 输出结果为: ``` key value_x value_y 0 foo 1 5 1 foo 1 8 2 foo 4 5 3 foo 4 8 4 bar 2 6 ``` 1.3. join() join()函数是按照DataFrame的索引进行合并,相当于SQL中的inner join。join()函数的用法和merge()函数基本相同,只是对于join()函数,可以省略on参数,因为他默认情况下是按照索引进行合并的。 例如: ``` import pandas as pd left = pd.DataFrame({'key': ['K0', 'K1', 'K2'], 'A': ['A0', 'A1', 'A2'], 'B': ['B0', 'B1', 'B2'], 'C': ['C0', 'C1', 'C2']}) right = pd.DataFrame({'key': ['K0', 'K1', 'K2'], 'D': ['D0', 'D1', 'D2'], 'E': ['E0', 'E1', 'E2']}) result = left.join(right.set_index('key'), on='key') print(result) ``` 输出结果为: ``` key A B C D E 0 K0 A0 B0 C0 D0 E0 1 K1 A1 B1 C1 D1 E1 2 K2 A2 B2 C2 D2 E2 ``` 1.4. append() append()函数是将行或列追加到DataFrame的末尾。append()函数可以追加DataFrame、Series或者List数据。 例如: ``` import pandas as pd df = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}) s = pd.Series(['S0', 'S1', 'S2', 'S3'], index=['A', 'B', 'C', 'D']) result = df.append(s, ignore_index=True) print(result) ``` 输出结果为: ``` A B C D 0 A0 B0 C0 D0 1 A1 B1 C1 D1 2 A2 B2 C2 D2 3 A3 B3 C3 D3 4 S0 S1 S2 S3 ``` 2.垂直合并 垂直合并是将两个或多个DataFrame按行连接起来,使它们的列对齐。在Pandas中,主要有两种方法可以实现垂直合并concat()和append()。 例如: ``` import pandas as pd df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'], 'B': ['B0', 'B1', 'B2', 'B3'], 'C': ['C0', 'C1', 'C2', 'C3'], 'D': ['D0', 'D1', 'D2', 'D3']}) df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'], 'B': ['B4', 'B5', 'B6', 'B7'], 'C': ['C4', 'C5', 'C6', 'C7'], 'D': ['D4', 'D5', 'D6', 'D7']}) result = pd.concat([df1, df2], ignore_index=True) print(result) ``` 输出结果为: ``` A B C D 0 A0 B0 C0 D0 1 A1 B1 C1 D1 2 A2 B2 C2 D2 3 A3 B3 C3 D3 4 A4 B4 C4 D4 5 A5 B5 C5 D5 6 A6 B6 C6 D6 7 A7 B7 C7 D7 ``` 总的来说,不同情况下使用不同的合并方式。当需要按列合并多个DataFrame时,通常使用concat()函数;当要按行合并多个DataFrame时,也使用concat()函数或者append()函数。当需要按列或指定的列进行连接时,一般使用merge()函数;当需要按索引或者指定的索引进行连接时,一般使用join()函数。简单来说,水平合并主要用于增加列数,垂直合并主要用于增加行数。 ### 回答3: Pandas是一个用于数据分析的强大 Python 库。在数据分析过程中,我们常常需要将不同的数据源合并在一起进行分析处理,而Pandas提供了各种方法来实现数据合并的操作。其中,DataFramePandas中最重要的数据类型之一。 DataFrame合并可以通过concat、merge和join三种方式实现。 1. concat concat可以将两个或多个DataFrame沿着某个轴进行合并操作,类似于SQL中的UNION操作,不过需要注意的是,concat操作并不会对数据进行任何的匹配或者过滤,只是单纯地把两个DataFrame按照指定的轴进行粘合。其中,常用的参数有axis、join和keys。 2. merge merge可以实现类似于SQL中的JOIN操作,即基于某些公共列的值将两个DataFrame进行合并。merge操作需要指定两个DataFrame中用于合并的列名,同时也可以通过参数如how、on、left_on、right_on等进行进一步的控制。merge操作的结果通常是两个表根据公共的key字段进行合并。 3. join join和merge类似,也是基于某些公共列的值将两个DataFrame进行合并。不过 join 的默认操作是以左连接,即左边的DataFrame的样本将全部保留,而右边的DataFrame中与左边不匹配的样本将被删除。可以使用如how、on、left_index、right_index 等参数来实现更加精细的控制。 总体来说,PandasDataFrame合并的操作是非常灵活和多样化的,可以根据实际需求选择不同的方式来实现数据合并的目的,进而进行更加深入的数据分析和挖掘。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值