基于python的智能文本分析_基于Python的智能文本分析

本书涵盖了语言与计算的基础,介绍了如何构建自定义语料库、预处理文本、进行文本向量化,以及运用文本分类、聚类和主题建模等技术。还涉及上下文感知文本分析、文本可视化、图分析和聊天机器人开发。并探讨了使用多处理和Spark扩展文本分析的可能性,以及深度学习在未来的应用。
摘要由CSDN通过智能技术生成

前言 1

第1章 语言与计算 13

数据科学范式 14

语言感知数据产品 .16

语言即数据 21

小结 .29

第 2 章 构建自定义语料库 31

语料库是什么? .32

语料库数据管理 .35

语料库读取器 39

小结 .49

第3章 语料库预处理与处置 50

分解文档.50

语料库的转换 60

小结 .67

第4章 文本向量化和转换流水线 68

空间中的词 69

Scikit-Learn API .81

流水线 .88

小结 .93

第5章 面向文本分析的文本分类 95

文本分类.96

构建文本分类应用 .99

小结 .110

第6章 文本相似性聚类 . 112

文本上的无监督学习 112

文档相似性聚类 .114

文档主题建模 127

小结 .139

第7章 上下文感知文本分析 140

基于语法的特征提取 141

n-Gram特征提取 147

n-Gram语言模型 155

小结 .165

第8章 文本可视化 166

可视化特征空间 .167

模型诊断.185

可视化操纵 193

小结 .196

第9章 文本的图分析 .198

图计算与分析 200

从文本中抽取图 .204

实体解析.216

小结 .221

第10章 聊天机器人 223

对话基础.224

礼貌对话规则 231

有趣的问题 239

学习帮助.250

小结 .257

第11章 利用多处理和Spark扩展文本分析259

Python多处理 .260

Spark集群计算 271

小结 .289

第12章 深度学习与未来 .291

应用神经网络 292

神经网络语言模型 .292

情感分析.303

未来(几乎)已来 .309

词汇表  311

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值