opencv--使用直方图找谷底进行确定分割阈值

直方图原理就不说了,大家自行百度

直方图可以帮助分析图像中的灰度变化,进而帮助确定最优二值化的灰度阈值(threshold level)。如果物体与背景的灰度值对比明显,此时灰度直方图就会包含双峰(bimodal histogram),即直方图中一般会有两个峰值,分别为图像的前景和背景。

前景使得某个灰度区间的灰度值的数量急剧增加,就会产生一个峰值,同理背景会使另一个灰度区间的灰度值的数量急剧增加,就产生另外一个峰值,两峰间的谷底对应于物体边缘附近相对较少数目的像素点。

这两个峰值之间的最小值一般就是最优二值化的分界点,通过这个分界点可以把前景和背景很好地分割开来。

有时这两个峰值会有部分重叠,即左侧峰值的下降部分和右侧峰值的上升部分存在叠加。通常可以把自然界的信号看做高斯信号,即一个峰值对应一个高斯信号,当直方图中的两个高斯信号在某个灰度区域叠加的时候,其叠加区就形成了一个圆滑的谷底,就很难找到一个确切的位置(最优二值化的灰度值)把这两个峰值分开。

 

float calculateThreshold(cv::Mat& img)
{
    cv::Mat temp = img.clone();
    
    // 计算直方图
    cv::Mat hist;
    int histSize = 256;  // 直方图尺寸
    float range[] = { 0, 256 };  // 像素值范围
    const float* ranges[] = { range };
    cv::calcHist(&img, 1, nullptr, cv::Mat(), hist, 1, &histSize, ranges);

    /*for (int i = 0; i < 21; i++)
        hist.at<float>(i, 0) = 0.0;*/

    cv::normalize(hist, hist, 0, 1, cv::NORM_MINMAX);
    //hist.convertTo(hist, CV_32S);
    cv::GaussianBlur(hist, hist, cv::Size(0, 0),3,3);
    //cv::blur(hist, hist, cv::Size(1, 9),cv::Point(-1,-1));
    
    
    
    std::vector<float> peaks;  // 存储峰值位置
    std::vector<float> valleys;  // 存储低谷位置

    for (int i = 1; i < histSize - 1; i++) {
        //std::cout << std::fixed << std::setprecision(4);
        float currentValue = hist.at<float>(i);
        float prevValue = hist.at<float>(i - 1);
        float nextValue = hist.at<float>(i + 1);
        
        /*if (currentValue < 0.001)
            continue;*/
        // 具体情况需要修改currentValue>0.005的阈值
        if ((currentValue > prevValue && currentValue > nextValue && currentValue>0.005)) {
            std::cout << prevValue << " " << currentValue << " " << nextValue << std::endl;
            peaks.push_back(i);  // 峰值
        }
        else if (currentValue < prevValue && currentValue < nextValue && currentValue>0.001) {
            std::cout << prevValue << " " << currentValue << " " << nextValue << std::endl;
            valleys.push_back(i);  // 低谷
        }
    }
    if(valleys.size()>0)
        cv::threshold(temp, temp, valleys[0], 255, cv::THRESH_BINARY);
    // 创建直方图可视化图像
    int histWidth = 512;
    int histHeight = 400;
    cv::Mat histImage(histHeight, histWidth, CV_8UC3, cv::Scalar(0, 0, 0));
    cv::Mat hist_temp;
    // 归一化直方图数据
    cv::normalize(hist, hist_temp, 0, histImage.rows, cv::NORM_MINMAX, -1, cv::Mat());
    
    // 绘制直方图
    int binWidth = cvRound((double)histWidth / histSize);
    for (int i = 0; i < histSize; i++) {
        int binHeight = cvRound(hist_temp.at<float>(i));
        cv::line(histImage, cv::Point(i * binWidth, histHeight), cv::Point(i * binWidth, histHeight - binHeight), cv::Scalar(255, 255, 255));
    }

    if (valleys.size() > 0)
        return valleys[0];
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值