java 点云数据处理_三维点云处理技术二:三维点云表征概述

本文介绍了三维点云数据处理的主要方法,包括立体视觉测量法、结构光3D成像法和飞行时间TOF法,详细阐述了每种方法的原理、优缺点,并探讨了点云数据的表征形式。主动双目立体视觉在弱纹理场景中提高匹配效果,但计算复杂度高;结构光3D成像法解决了匹配难题,但不适合强光环境;TOF法实时性好,但传感器技术尚不成熟。
摘要由CSDN通过智能技术生成

讲师:索传哲

三维点云数据获取方式及原理

主要分为立体视觉测量法、结构光3D成像法、飞行时间TOF法。

f8fa3a8343755775381e89d9cd54761d.png

立体视觉测量法

相机成像模型

视觉SLAM14讲——相机模型介绍

世界坐标系下的三维坐标点P w ⟶ P_w\longrightarrowPw​⟶相机坐标系下的坐标P c ⟶ P_c\longrightarrowPc​⟶归一化坐标P n o r m ⟶ P_{norm}\longrightarrowPnorm​⟶畸变后的坐标P d ⟶ P_d\longrightarrowPd​⟶像素坐标U ( u , v ) U(u,v)U(u,v)

bce24cc498f900e491bb897366d65e5a.png

被动双目立体视觉

双目立体视觉是利用视差原理来计算深度。两幅图片因为相机视角不同带来的图像差别构成视差,过程如下:

1,首先需要对双目相机进行标定,得到两个相机的内外参数、单应矩阵。

2,根据标定结果对原始图像校正,校正后的两张图像位于同一平面且互相平行。

3,对校正后的两张图像根据极线约束进行像素点匹配。

4,根据匹配结果计算每个像素的深度,从而获得深度图。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值