1. 线性回归的假设是什么
线性回归有四个假设:
-
线性:自变量(x)和因变量(y)之间应该存在线性关系,这意味着x值的变化也应该在相同方向上改变y值。
-
独立性:特征应该相互独立,这意味着最小的多重共线性。
-
正态性:残差应该是正态分布的。
-
同方差性:回归线周围数据点的方差对于所有值应该相同。
2. 什么是残差,如何用它评估回归模型
残差是指预测值与观测值之间的误差。它测量数据点与回归线的距离。它是通过从观察值中减去预测值的计算机。
残差图是评估回归模型的好方法。它是一个图表,在垂直轴上显示所有残差,在 x 轴上显示特征。如果数据点随机散布在没有图案的线上,那么线性回归模型非常适合数据,否则我们应该使用非线性模型。
3. 如何区分线性回归模型和非线性回归模型
两者都是回归问题的类型。两者的区别在于他们