【十问十答】回归模型知识点

这篇博客详细讨论了回归模型的基础知识,包括线性回归的四个假设,残差的定义及其在模型评估中的作用,如何区分线性与非线性模型,以及多重共线性对模型性能的影响。此外,还介绍了异常值如何降低模型性能,MSE和MAE的区别,L1和L2正则化的应用,异方差的概念,方差膨胀因子的作用,以及逐步回归的工作原理。
摘要由CSDN通过智能技术生成

1. 线性回归的假设是什么

线性回归有四个假设:

  • 线性:自变量(x)和因变量(y)之间应该存在线性关系,这意味着x值的变化也应该在相同方向上改变y值。

  • 独立性:特征应该相互独立,这意味着最小的多重共线性。

  • 正态性:残差应该是正态分布的。

  • 同方差性:回归线周围数据点的方差对于所有值应该相同。

2. 什么是残差,如何用它评估回归模型

残差是指预测值与观测值之间的误差。它测量数据点与回归线的距离。它是通过从观察值中减去预测值的计算机。

残差图是评估回归模型的好方法。它是一个图表,在垂直轴上显示所有残差,在 x 轴上显示特征。如果数据点随机散布在没有图案的线上,那么线性回归模型非常适合数据,否则我们应该使用非线性模型。

3. 如何区分线性回归模型和非线性回归模型

两者都是回归问题的类型。两者的区别在于他们

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

allein_STR

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值