极智AI | Nvidia Jetson DLA 硬件系统架构

本文深入介绍了NVIDIA Jetson系列的DLA(Deep Learning Accelerator)模块,专用于卷积神经网络前向推理加速。DLA包括Small和Large两种系统架构,其核心组件如Convolution Core、Single Point Data Processor、Planar Data Processor和Cross Channel Data Processor等,分别针对卷积、激活函数、池化和归一化操作进行优化。此外,RUBIK和BDMA模块则负责数据转换和内存管理,提升计算效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注我的公众号 [极智视界],获取我的更多笔记分享

  大家好,我是极智视界,本文介绍一下 Nvidia Jetson DLA 硬件系统架构。

  NV 的硬件应用广泛,不限于3D图形渲染、AI计算等,而 Jetson 系列是 NV 边缘计算领域的设备主力军。在 Jetson AGX Xavier、Jetson NX 等设备上有 DLA 模块,DLA 全称 Deep Learning Accelerator,是专门用于卷积神经网络前向推理加速的模块,它能够分担一部分边缘端 GPU 的计算压力,以提升系统能力处理能力。所以在这些设备上,你可选择的算法加速方式有 GPU 加速 和 DLA 加速。这里咱们专门来讲讲 NVDLA。

1 总体架构介绍

  DLA 的系统架构分为 Small NVDLA System 和 Large NVDLA System,如下。其中 Small NVDLA System 主要面向成本敏感的物联网设备场景,而当更加强调高性能时,Large NVDLA System 会是更加好的选择。可以看到两者最大的区别在 SRAM 和 Microcontroller,Large NVDLA 的访存接口有 SRAM 和 DRAM,其中 SRAM 接口独立存在,可以进一步提升 DLA 的运算能力,这是由于 DRAM 的访存延时相对较长,且与片

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极智视界

你的支持 是我持续创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值