概述
传统上,使用CANDECOMP / PARAFAC(CP)或Tucker模型或其某些变体,将张量表示为1级外部乘积或将其分解。 这样的分解是由特定的应用推动的,在这些特定的应用中,目标是找到给定多路阵列的近似这样的表示。 近似表示的细节(例如,在和中使用多少项,正交性约束等)取决于应用程序。
在本文中,我们探索张量的替代表示形式。 让人想起矩阵分解,我们提出了一个新的张量分解,将其作为张量的乘积。 为了导出新的因式分解,我们定义了张量之间的闭合乘法运算。 考虑这种新类型的张量乘法的主要动机是为张量设计新的因式分解,然后将其用于应用程序中。
具体地说,这种新的乘法使我们能够引入诸如张量转置,逆和恒等的概念,从而产生了正交张量的概念。 乘法还产生线性运算符,并确定结果运算符的零空间。 我们将向量的外部积的概念扩展到矩阵的外部积。 所有推导均针对三阶张量给出。 但是,它们可以很容易地扩展到p阶(p> 3)的情况。
张量背景以及记号
p阶张量:
因此,矩阵被认为是二阶张量,向量是一阶张量。 三阶张量可以表示为数据的“多维数据集”(见图2.1)
虽然三阶张量的方向不是唯一的,但引用其切片即通过将两个索引保持恒定而定义的二维截面很方便。横向和正面切片来指定哪些两个索引保持不变。 使用Matlab表示法,对应于第k个水平切片,
对应于第k个横向切片,而
对应于第k个正面切片。 通过保持前两个索引不变并改变第三个索引来定义三阶张量的管。例如,使用Matlab表示法,
是A的第ij个管。
在整个本文中,了解张量的方向至关重要。 考虑到这一点,我们将限制在三阶张量上,并尽可能避免出现混乱的下标。 因此,基于给定的方向,我们将主要指的是张量的前切片。
如果u是一个长度为m的向量,v是一个长度为n的向量,则是u和v的外积。该外积给出一个秩为1的矩阵,其(i,j)项为 由标量乘积
决定。 类似地,外部乘积
产生具有
给定的(i,j,k)项的秩为1的三阶张量。 同样,四个向量的外积给出1阶,四阶张量等
p级张量A的张量秩r是表示张量所需的最小1秩张量。 对于三阶张量,这意味着我们具有
------------------------(2.1)
其中σi是缩放常数。 缩放常数只是r×r×r对角张量的非零元素(如果仅非零出现在元素
中,其中i = j = k,则张量是对角线)。 向量u(i),v(i)和w(i)分别是矩阵
,
,
的第i列。
形式(2.1)的分解称为CANDECOMP–PARAFAC(CP)分解(CANonical DECOMPosition或PARAllel FACtors模型),无论r是否已知最小。 注意,(2.1)中的矩阵U,V,W不限于正交。 此外,形式(2.1)的正交分解位置可能不存在。 没有已知的封闭形式解可以确定先验张量的秩r。 张量的秩确定是一个广泛研究的问题。
HOSVD首先计算通过将各个维度上的张量“展平”而获得的矩阵的SVD,然后使用结果组装所谓的核心张量