flink流处理API

Environment

getExecutionEnvironment

创建一个执行环境,表示当前执行程序的上下文。 如果程序是独立调用的,则此方法返回本地执行环境;如果从命令行客户端调用程序以提交到集群,则此方法返回此集群的执行环境,也就是说,getExecutionEnvironment会根据查询运行的方式决定返回什么样的运行环境,是最常用的一种创建执行环境的方式。
val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
如果没有设置并行度,会以flink-conf.yaml中的配置为准,默认是1

createLocalEnvironment

返回本地执行环境,需要在调用时指定默认的并行度。不指定就类似于spark的local[*]
val env = StreamExecutionEnvironment.createLocalEnvironment(1)

createRemoteEnvironment

返回集群执行环境,将Jar提交到远程服务器。需要在调用时指定JobManager的IP和端口号,并指定要在集群中运行的Jar包。
val env = ExecutionEnvironment.createRemoteEnvironment(“jobmanager-hostname”, 6123,“D://jar//flink//wordcount.jar”)

Transform

map

与spark的一样
val streamMap = stream.map { x => x * 2 }

flatMap

与spark的一样
val streamFlatMap = stream.flatMap{
x => x.split(" ")
}

Filter

与spark的一样
val streamFilter = stream.filter{
x => x == 1
}

KeyBy

DataStream → KeyedStream:输入必须是Tuple类型,逻辑地将一个流拆分成不相交的分区,每个分区包含具有相同key的元素,在内部以hash的形式实现的。

Reduce

KeyedStream → DataStream:一个分组数据流的聚合操作,合并当前的元素和上次聚合的结果,产生一个新的值,返回的流中包含每一次聚合的结果,而不是只返回最后一次聚合的最终结果。
KeyBy与Reduce结合类似于spark的reduceByKey

flink是如何保存累计值的

flink是一种有状态的流计算框架,其中说的状态包括两个层面:
1)operator state 主要是保存数据在流程中的处理状态,用于确保语义的exactly-once。
2)keyed state 主要是保存数据在计算过程中的累计值。
这两种状态都是通过checkpoint机制保存在StateBackend中,StateBackend可以选择保存在内存中(默认使用)或者保存在磁盘文件中。

Split

DataStream → SplitStream:根据某些特征把一个DataStream拆分成两个或者多个DataStream。
在这里插入图片描述

Select

SplitStream→DataStream:从一个SplitStream中获取一个或者多个DataStream。
在这里插入图片描述

Connect和 CoMap

在这里插入图片描述
DataStream,DataStream → ConnectedStreams:连接两个保持他们类型的数据流,两个数据流被Connect之后,只是被放在了一个同一个流中,内部依然保持各自的数据和形式不发生任何变化,两个流相互独立。

CoMap,CoFlatMap

在这里插入图片描述
ConnectedStreams → DataStream:作用于ConnectedStreams上,功能与map和flatMap一样,对ConnectedStreams中的每一个Stream分别进行map和flatMap处理。

Union

在这里插入图片描述
DataStream → DataStream:对两个或者两个以上的DataStream进行union操作,产生一个包含所有DataStream元素的新DataStream。注意:如果你将一个DataStream跟它自己做union操作,在新的DataStream中,你将看到每一个元素都出现两次。
Connect与 Union 区别:
1 、 Union之前两个流的类型必须是一样,Connect可以不一样,在之后的coMap中再去调整成为一样的。
2、 Connect只能操作两个流,Union可以操作多个

Sink

Flink没有类似于spark中foreach方法,让用户进行迭代的操作。虽有对外的输出操作都要利用Sink完成。最后通过类似如下方式完成整个任务最终输出操作。
myDstream.addSink(new MySink(xxxx))
官方提供了一部分的框架的sink。除此以外,需要用户自定义实现sink。
在这里插入图片描述

Kafka

依赖:

 <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka-0.11 -->
<dependency>
    <groupId>org.apache.flink</groupId>
    <!--0.11kafka版本  2.11scala版本-->
    <artifactId>flink-connector-kafka-0.11_2.11</artifactId>
    <!--flink版本-->
    <version>1.7.0</version>
</dependency>

案例:

def getProducer(topic:String): FlinkKafkaProducer011[String] ={
  new FlinkKafkaProducer011[String](brokerList,topic,new SimpleStringSchema())
}

主函数中添加sink

val myKafkaProducer: FlinkKafkaProducer011[String] = MyKafkaUtil.getProducer("test")
sumDstream.map( chCount=>chCount._1+":"+chCount._2 ).addSink(myKafkaProducer)

Redis

<!-- https://mvnrepository.com/artifact/org.apache.bahir/flink-connector-redis -->
<dependency>
    <groupId>org.apache.bahir</groupId>
    <artifactId>flink-connector-redis_2.11</artifactId>
    <version>1.0</version>
</dependency>
object MyRedisUtil {
  val conf = new FlinkJedisPoolConfig.Builder().setHost("master").setPort(6379).build()
  def getRedisSink(): RedisSink[(String,String)] ={
    new RedisSink[(String,String)](conf,new MyRedisMapper)
  }
  class MyRedisMapper extends RedisMapper[(String,String)]{
    override def getCommandDescription: RedisCommandDescription = {
      new RedisCommandDescription(RedisCommand.HSET, "test")
     // new RedisCommandDescription(RedisCommand.SET  )
    }
    override def getValueFromData(t: (String, String)): String = t._2
    override def getKeyFromData(t: (String, String)): String = t._1
  }
}

在主函数中调用

sumDstream.map( chCount=>(chCount._1,chCount._2+"" )).addSink(MyRedisUtil.getRedisSink())

Elasticsearch

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-elasticsearch6_2.11</artifactId>
    <version>1.7.0</version>
</dependency>

<dependency>
    <groupId>org.apache.httpcomponents</groupId>
    <artifactId>httpclient</artifactId>
    <version>4.5.3</version>
</dependency>
import java.util
import com.alibaba.fastjson.{JSON, JSONObject}
import org.apache.flink.api.common.functions.RuntimeContext
import org.apache.flink.streaming.connectors.elasticsearch.{ElasticsearchSinkFunction, RequestIndexer}
import org.apache.flink.streaming.connectors.elasticsearch6.ElasticsearchSink
import org.apache.http.HttpHost
import org.elasticsearch.action.index.IndexRequest
import org.elasticsearch.client.Requests
object MyEsUtil {
  val httpHosts = new util.ArrayList[HttpHost]
  httpHosts.add(new HttpHost("master",9200,"http"))
   httpHosts.add(new HttpHost("slave1",9200,"http"))
   httpHosts.add(new HttpHost("slave2",9200,"http"))
  def  getElasticSearchSink(indexName:String):  ElasticsearchSink[String]  ={
    val esFunc = new ElasticsearchSinkFunction[String] {
      override def process(element: String, ctx: RuntimeContext, indexer: RequestIndexer): Unit = {
        println("试图保存:"+element)
        val jsonObj: JSONObject = JSON.parseObject(element)
        val indexRequest: IndexRequest = Requests.indexRequest().index(indexName).`type`("_doc").source(jsonObj)
        indexer.add(indexRequest)
        println("保存1条")
      }
    }
    val sinkBuilder = new ElasticsearchSink.Builder[String](httpHosts, esFunc)
    //刷新前缓冲的最大动作量
    sinkBuilder.setBulkFlushMaxActions(10)
     sinkBuilder.build()
  }
}

在main方法中调用

 val esSink: ElasticsearchSink[String] = MyEsUtil.getElasticSearchSink("gmall0503_startup")
 dstream.addSink(esSink)

JDBC 自定义sink

<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>5.1.44</version>
</dependency>

<dependency>
    <groupId>com.alibaba</groupId>
    <artifactId>druid</artifactId>
    <version>1.1.10</version>
</dependency>
class MyJdbcSink(sql:String ) extends  RichSinkFunction[Array[Any]] {
  val driver="com.mysql.jdbc.Driver"
  val url="jdbc:mysql://master:3306/gmall2019?useSSL=false"
  val username="root"
  val password="root"
  val maxActive="20"
  var connection:Connection=null;
  //创建连接
  override def open(parameters: Configuration): Unit = {
    val properties = new Properties()
    properties.put("driverClassName",driver)
    properties.put("url",url)
    properties.put("username",username)
    properties.put("password",password)
    properties.put("maxActive",maxActive)
    val dataSource: DataSource = DruidDataSourceFactory.createDataSource(properties)
    connection = dataSource.getConnection()
  }
//反复调用
  override def invoke(values: Array[Any]): Unit = {
    val ps: PreparedStatement = connection.prepareStatement(sql )
    println(values.mkString(","))
    for (i <- 0 until values.length) {
      ps.setObject(i + 1, values(i))
    }
    ps.executeUpdate()
  }
  override def close(): Unit = {

    if(connection!=null){
      connection.close()
    }
  }
}
val startUplogDstream: DataStream[StartUpLog] = dstream.map{ JSON.parseObject(_,classOf[StartUpLog])}

val jdbcSink = new MyJdbcSink("insert into z_startup values(?,?,?,?,?)")
startUplogDstream.map(startuplog=>Array(startuplog.mid,startuplog.uid,startuplog.ch,startuplog.area,  startuplog.ts)).addSink(jdbcSink)

Time与Window

Time

在Flink的流式处理中,会涉及到时间的不同概念,如下图所示:
在这里插入图片描述
Event Time:是事件创建的时间。它通常由事件中的时间戳描述,例如采集的日志数据中,每一条日志都会记录自己的生成时间,Flink通过时间戳分配器访问事件时间戳。
Ingestion Time:是数据进入Flink的时间。
Processing Time:是每一个执行基于时间操作的算子的本地系统时间,与机器相关,默认的时间属性就是Processing Time。
例如,一条日志进入Flink的时间为2017-11-12 10:00:00.123,到达Window的系统时间为2017-11-12 10:00:01.234,日志的内容如下:
2017-11-02 18:37:15.624 INFO Fail over to rm2
对于业务来说,要统计1min内的故障日志个数,哪个时间是最有意义的?—— eventTime,因为我们要根据日志的生成时间进行统计。

Window

Window概述

streaming流式计算是一种被设计用于处理无限数据集的数据处理引擎,而无限数据集是指一种不断增长的本质上无限的数据集,而window是一种切割无限数据为有限块进行处理的手段。
Window是无限数据流处理的核心,Window将一个无限的stream拆分成有限大小的“buckets”桶,我们可以在这些桶上做计算操作。

Window类型

Window可以分成两类:
CountWindow:按照指定的数据条数生成一个Window,与时间无关。
TimeWindow:按照时间生成Window。
对于TimeWindow,可以根据窗口实现原理的不同分成三类:滚动窗口(Tumbling Window)、滑动窗口(Sliding Window)和会话窗口(Session Window)。
1.滚动窗口(Tumbling Windows)
将数据依据固定的窗口长度对数据进行切片。
特点:时间对齐,窗口长度固定,没有重叠。
滚动窗口分配器将每个元素分配到一个指定窗口大小的窗口中,滚动窗口有一个固定的大小,并且不会出现重叠。例如:如果你指定了一个5分钟大小的滚动窗口,窗口的创建如下图所示:
在这里插入图片描述
适用场景:适合做BI统计等(做每个时间段的聚合计算)
2. 滑动窗口(Sliding Windows)
滑动窗口是固定窗口的更广义的一种形式,滑动窗口由固定的窗口长度和滑动间隔组成。
特点:时间对齐,窗口长度固定,有重叠。
滑动窗口分配器将元素分配到固定长度的窗口中,与滚动窗口类似,窗口的大小由窗口大小参数来配置,另一个窗口滑动参数控制滑动窗口开始的频率。因此,滑动窗口如果滑动参数小于窗口大小的话,窗口是可以重叠的,在这种情况下元素会被分配到多个窗口中。
例如,你有10分钟的窗口和5分钟的滑动,那么每个窗口中5分钟的窗口里包含着上个10分钟产生的数据,如下图所示:
在这里插入图片描述
适用场景:对最近一个时间段内的统计(求某接口最近5min的失败率来决定是否要报警)。
3.会话窗口(Session Windows)
由一系列事件组合一个指定时间长度的timeout间隙组成,类似于web应用的session,也就是一段时间没有接收到新数据就会生成新的窗口。
特点:时间无对齐。
session窗口分配器通过session活动来对元素进行分组,session窗口跟滚动窗口和滑动窗口相比,不会有重叠和固定的开始时间和结束时间的情况,相反,当它在一个固定的时间周期内不再收到元素,即非活动间隔产生,那个这个窗口就会关闭。一个session窗口通过一个session间隔来配置,这个session间隔定义了非活跃周期的长度,当这个非活跃周期产生,那么当前的session将关闭并且后续的元素将被分配到新的session窗口中去。
在这里插入图片描述

Window API

TimeWindow

TimeWindow是将指定时间范围内的所有数据组成一个window,一次对一个window里面的所有数据进行计算。
1.滚动窗口
Flink默认的时间窗口根据Processing Time 进行窗口的划分,将Flink获取到的数据根据进入Flink的时间划分到不同的窗口中。

val keyedStream: KeyedStream[(String, Int), Tuple] = startUplogDstream.map(startuplog=>(startuplog.ch,1)).keyBy(0)
//每10秒统计一次各个渠道的计数
val windowedStream: WindowedStream[(String, Int), Tuple, TimeWindow] = keyedStream.timeWindow(Time.seconds(10))
val sumDstream: DataStream[(String, Int)] = windowedStream.sum(1)

时间间隔可以通过Time.milliseconds(x),Time.seconds(x),Time.minutes(x)等其中的一个来指定。
2.滑动窗口(SlidingEventTimeWindows)
滑动窗口和滚动窗口的函数名是完全一致的,只是在传参数时需要传入两个参数,一个是window_size,一个是sliding_size。
下面代码中的sliding_size设置为了2s,也就是说,窗口每2s就计算一次,每一次计算的window范围是5s内的所有元素。

val keyedStream: KeyedStream[(String, Int), Tuple] = startUplogDstream.map(startuplog=>(startuplog.ch,1)).keyBy(0)
//每5秒统计一次最近10秒的各个渠道的计数
val windowedStream: WindowedStream[(String, Int), Tuple, TimeWindow] = keyedStream.timeWindow(Time.seconds(10),Time.seconds(5))
val sumDstream: DataStream[(String, Int)] = windowedStream.sum(1)

时间间隔可以通过Time.milliseconds(x),Time.seconds(x),Time.minutes(x)等其中的一个来指定。

CountWindow

CountWindow根据窗口中相同key元素的数量来触发执行,执行时只计算元素数量达到窗口大小的key对应的结果。
注意:CountWindow的window_size指的是相同Key的元素的个数,不是输入的所有元素的总数。
1滚动窗口
默认的CountWindow是一个滚动窗口,只需要指定窗口大小即可,当元素数量达到窗口大小时,就会触发窗口的执行。

val keyedStream: KeyedStream[(String, Int), Tuple] = startUplogDstream.map(startuplog=>(startuplog.ch,1)).keyBy(0)
 //每当某一个key的个数达到10的时候,显示出来
 val windowedStream: WindowedStream[(String, Int), Tuple, GlobalWindow] = keyedStream.countWindow(10)
 val sumDstream: DataStream[(String, Int)] = windowedStream.sum(1)

2滑动窗口
滑动窗口和滚动窗口的函数名是完全一致的,只是在传参数时需要传入两个参数,一个是window_size,一个是sliding_size。
下面代码中的sliding_size设置为了2,也就是说,每收到两个相同key的数据就计算一次,每一次计算的window范围是5个元素。

val keyedStream: KeyedStream[(String, Int), Tuple] = startUplogDstream.map(startuplog=>(startuplog.ch,1)).keyBy(0)
//每当某一个key的个数达到2的时候,触发计算,计算最近该key最近10个元素的内容
val windowedStream: WindowedStream[(String, Int), Tuple, GlobalWindow] = keyedStream.countWindow(10,2)
val sumDstream: DataStream[(String, Int)] = windowedStream.sum(1)

EventTime与Window

EventTime的引入

在Flink的流式处理中,绝大部分的业务都会使用eventTime,一般只在eventTime无法使用时,才会被迫使用ProcessingTime或者IngestionTime。
如果要使用EventTime,那么需要引入EventTime的时间属性,引入方式如下所示:

val env = StreamExecutionEnvironment.getExecutionEnvironment
// 从调用时刻开始给env创建的每一个stream追加时间特征
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

Watermark

1. 基本概念
我们知道,流处理从事件产生,到流经source,再到operator,中间是有一个过程和时间的,虽然大部分情况下,流到operator的数据都是按照事件产生的时间顺序来的,但是也不排除由于网络、分布式等原因,导致乱序的产生,所谓乱序,就是指Flink接收到的事件的先后顺序不是严格按照事件的Event Time顺序排列的。
在这里插入图片描述
那么此时出现一个问题,一旦出现乱序,如果只根据eventTime决定window的运行,我们不能明确数据是否全部到位,但又不能无限期的等下去,此时必须要有个机制来保证一个特定的时间后,必须触发window去进行计算了,这个特别的机制,就是Watermark。
Watermark是一种衡量Event Time进展的机制,它是数据本身的一个隐藏属性,数据本身携带着对应的Watermark。
Watermark是用于处理乱序事件的,而正确的处理乱序事件,通常用Watermark机制结合window来实现。
数据流中的Watermark用于表示timestamp小于Watermark的数据,都已经到达了,因此,window的执行也是由Watermark触发的。
Watermark可以理解成一个延迟触发机制,我们可以设置Watermark的延时时长t,每次系统会校验已经到达的数据中最大的maxEventTime,然后认定eventTime小于maxEventTime - t的所有数据都已经到达,如果有窗口的停止时间等于maxEventTime – t,那么这个窗口被触发执行。
有序流的Watermarker如下图所示:(Watermark设置为0)
在这里插入图片描述
乱序流的Watermarker如下图所示:(Watermark设置为2)
在这里插入图片描述
当Flink接收到每一条数据时,都会产生一条Watermark,这条Watermark就等于当前所有到达数据中的maxEventTime - 延迟时长,也就是说,Watermark是由数据携带的,一旦数据携带的Watermark比当前未触发的窗口的停止时间要晚,那么就会触发相应窗口的执行。由于Watermark是由数据携带的,因此,如果运行过程中无法获取新的数据,那么没有被触发的窗口将永远都不被触发。
上图中,我们设置的允许最大延迟到达时间为2s,所以时间戳为7s的事件对应的Watermark是5s,时间戳为12s的事件的Watermark是10s,如果我们的窗口1是1s5s,窗口2是6s10s,那么时间戳为7s的事件到达时的Watermarker恰好触发窗口1,时间戳为12s的事件到达时的Watermark恰好触发窗口2。

Watermark 就是触发前一窗口的“关窗时间”,一旦触发关门那么以当前时刻为准在窗口范围内的所有所有数据都会收入窗中。
只要没有达到水位那么不管现实中的时间推进了多久都不会触发关窗。
2.Watermark的引入

val textWithEventTimeDstream: DataStream[(String, Long, Int)] = textWithTsDstream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[(String, Long, Int)](Time.milliseconds(1000)) {
  override def extractTimestamp(element: (String, Long, Int)): Long = {

   return  element._2
  }
})

EvnetTimeWindow API

1.滚动窗口(TumblingEventTimeWindows)

def main(args: Array[String]): Unit = {
    //  环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
    env.setParallelism(1)
    val dstream: DataStream[String] = env.socketTextStream("master",7777)
    val textWithTsDstream: DataStream[(String, Long, Int)] = dstream.map { text =>
      val arr: Array[String] = text.split(" ")
      (arr(0), arr(1).toLong, 1)
    }
    val textWithEventTimeDstream: DataStream[(String, Long, Int)] = textWithTsDstream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[(String, Long, Int)](Time.milliseconds(1000)) {
      override def extractTimestamp(element: (String, Long, Int)): Long = {

       return  element._2
      }
    })

    val textKeyStream: KeyedStream[(String, Long, Int), Tuple] = textWithEventTimeDstream.keyBy(0)
    textKeyStream.print("textkey:")

    val windowStream: WindowedStream[(String, Long, Int), Tuple, TimeWindow] = textKeyStream.window(TumblingEventTimeWindows.of(Time.seconds(2)))

    val groupDstream: DataStream[mutable.HashSet[Long]] = windowStream.fold(new mutable.HashSet[Long]()) { case (set, (key, ts, count)) =>
      set += ts
    }
    groupDstream.print("window::::").setParallelism(1)
    env.execute()
  }
}

结果是按照Event Time的时间窗口计算得出的,而无关系统的时间(包括输入的快慢)。
2.滑动窗口(SlidingEventTimeWindows)

def main(args: Array[String]): Unit = {
  //  环境
  val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
  env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
  env.setParallelism(1)
  val dstream: DataStream[String] = env.socketTextStream("master",7777)
  val textWithTsDstream: DataStream[(String, Long, Int)] = dstream.map { text =>
    val arr: Array[String] = text.split(" ")
    (arr(0), arr(1).toLong, 1)
  }
  val textWithEventTimeDstream: DataStream[(String, Long, Int)] = textWithTsDstream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[(String, Long, Int)](Time.milliseconds(1000)) {
    override def extractTimestamp(element: (String, Long, Int)): Long = {
     return  element._2
    }
  })
  val textKeyStream: KeyedStream[(String, Long, Int), Tuple] = textWithEventTimeDstream.keyBy(0)
  textKeyStream.print("textkey:")
  val windowStream: WindowedStream[(String, Long, Int), Tuple, TimeWindow] = textKeyStream.window(SlidingEventTimeWindows.of(Time.seconds(2),Time.milliseconds(500)))
  val groupDstream: DataStream[mutable.HashSet[Long]] = windowStream.fold(new mutable.HashSet[Long]()) { case (set, (key, ts, count)) =>
    set += ts
  }
  groupDstream.print("window::::").setParallelism(1)
  env.execute()

}

3.会话窗口(EventTimeSessionWindows)
相邻两次数据的EventTime的时间差超过指定的时间间隔就会触发执行。如果加入Watermark, 会在符合窗口触发的情况下进行延迟。到达延迟水位再进行窗口触发。

def main(args: Array[String]): Unit = {
    //  环境
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
    env.setParallelism(1)
    val dstream: DataStream[String] = env.socketTextStream("master",7777)
    val textWithTsDstream: DataStream[(String, Long, Int)] = dstream.map { text =>
      val arr: Array[String] = text.split(" ")
      (arr(0), arr(1).toLong, 1)
    }
    val textWithEventTimeDstream: DataStream[(String, Long, Int)] = textWithTsDstream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[(String, Long, Int)](Time.milliseconds(1000)) {
      override def extractTimestamp(element: (String, Long, Int)): Long = {

       return  element._2
      }
    })
    val textKeyStream: KeyedStream[(String, Long, Int), Tuple] = textWithEventTimeDstream.keyBy(0)
    textKeyStream.print("textkey:")
    val windowStream: WindowedStream[(String, Long, Int), Tuple, TimeWindow] = textKeyStream.window(EventTimeSessionWindows.withGap(Time.milliseconds(500)) )
    windowStream.reduce((text1,text2)=>
      (  text1._1,0L,text1._3+text2._3)
    )  .map(_._3).print("windows:::").setParallelism(1)
    env.execute()
  }

Table API 与SQL

Table API是流处理和批处理通用的关系型API,Table API可以基于流输入或者批输入来运行而不需要进行任何修改。Table API是SQL语言的超集并专门为Apache Flink设计的,Table API是Scala 和Java语言集成式的API。与常规SQL语言中将查询指定为字符串不同,Table API查询是以Java或Scala中的语言嵌入样式来定义的,具有IDE支持如:自动完成和语法检测。
1.需要引入的pom依赖

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-table_2.11</artifactId>
    <version>1.7.0</version>
</dependency>

2.构造表环境

def main(args: Array[String]): Unit = {
  val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
  val myKafkaConsumer: FlinkKafkaConsumer011[String] = MyKafkaUtil.getConsumer("test")
  val dstream: DataStream[String] = env.addSource(myKafkaConsumer)
  val tableEnv: StreamTableEnvironment = TableEnvironment.getTableEnvironment(env)

  val startupLogDstream: DataStream[StartupLog] = dstream.map{ jsonString =>JSON.parseObject(jsonString,classOf[StartupLog]) }
  val startupLogTable: Table = tableEnv.fromDataStream(startupLogDstream)
   val table: Table = startupLogTable.select("mid,ch").filter("ch ='appstore'")
  val midchDataStream: DataStream[(String, String)] = table.toAppendStream[(String,String)]
  midchDataStream.print()
  env.execute()
}

动态表
如果流中的数据类型是case class可以直接根据case class的结构生成table
tableEnv.fromDataStream(startupLogDstream)
或者根据字段顺序单独命名
tableEnv.fromDataStream(startupLogDstream,’mid,’uid …)
最后的动态表可以转换为流进行输出
table.toAppendStream[(String,String)]
字段
用一个单引放到字段前面 来标识字段名, 如 ‘name , ‘mid ,’amount 等
3.通过一个例子 了解TableAPI

//每10秒中渠道为appstore的个数
def main(args: Array[String]): Unit = {
  //sparkcontext
  val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
  //时间特性改为eventTime
  env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)
  val myKafkaConsumer: FlinkKafkaConsumer011[String] = MyKafkaUtil.getConsumer("test")
  val dstream: DataStream[String] = env.addSource(myKafkaConsumer)
  val startupLogDstream: DataStream[StartupLog] = dstream.map{ jsonString =>JSON.parseObject(jsonString,classOf[StartupLog]) }
  //告知watermark 和 eventTime如何提取
  val startupLogWithEventTimeDStream: DataStream[StartupLog] = startupLogDstream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[StartupLog](Time.seconds(0L)) {
    override def extractTimestamp(element: StartupLog): Long = {
      element.ts
    }
  }).setParallelism(1)
  //SparkSession
  val tableEnv: StreamTableEnvironment = TableEnvironment.getTableEnvironment(env)
  //把数据流转化成Table
  val startupTable: Table = tableEnv.fromDataStream(startupLogWithEventTimeDStream , 'mid,'uid,'appid,'area,'os,'ch,'logType,'vs,'logDate,'logHour,'logHourMinute,'ts.rowtime)
  //通过table api 进行操作
  // 每10秒 统计一次各个渠道的个数 table api 解决
  //1 groupby  2 要用 window   3 用eventtime来确定开窗时间
  val resultTable: Table = startupTable.window(Tumble over 10000.millis on 'ts as 'tt).groupBy('ch,'tt ).select( 'ch, 'ch.count)
  //把Table转化成数据流
  //val appstoreDStream: DataStream[(String, String, Long)] = appstoreTable.toAppendStream[(String,String,Long)]
  val resultDstream: DataStream[(Boolean, (String, Long))] = resultSQLTable.toRetractStream[(String,Long)]
  resultDstream.filter(_._1).print()
  env.execute()
}

关于group by
1、如果使用 groupby table转换为流的时候只能用toRetractDstream

  val rDstream: DataStream[(Boolean, (String, Long))] = table.toRetractStream[(String,Long)]

2、toRetractDstream 得到的第一个boolean型字段标识 true就是最新的数据,false表示过期老数据

  val rDstream: DataStream[(Boolean, (String, Long))] = table.toRetractStream[(String,Long)]
  rDstream.filter(_._1).print()

3、如果使用的api包括时间窗口,那么时间的字段必须,包含在group by中。

 val table: Table = startupLogTable.filter("ch ='appstore'").window(Tumble over 10000.millis on 'ts as 'tt).groupBy('ch ,'tt).select("ch,ch.count ")

关于时间窗口
1用到时间窗口,必须提前声明时间字段,如果是processTime直接在创建动态表时进行追加就可以

val startupLogTable: Table = tableEnv.fromDataStream(startupLogWithEtDstream,'mid,'uid,'appid,'area,'os,'ch,'logType,'vs,'logDate,'logHour,'logHourMinute,'ts.rowtime)

2如果是EventTime要在创建动态表时声明

val startupLogTable: Table = tableEnv.fromDataStream(startupLogWithEtDstream,'mid,'uid,'appid,'area,'os,'ch,'logType,'vs,'logDate,'logHour,'logHourMinute,'ps.processtime)

3滚动窗口可以使用Tumble over 10000.millis on

  val table: Table = startupLogTable.filter("ch ='appstore'").window(Tumble over 10000.millis on 'ts as 'tt).groupBy('ch ,'tt).select("ch,ch.count ")

4.SQL如何编写

def main(args: Array[String]): Unit = {
  //sparkcontext
  val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment

  //时间特性改为eventTime
  env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

  val myKafkaConsumer: FlinkKafkaConsumer011[String] = MyKafkaUtil.getConsumer("test")
  val dstream: DataStream[String] = env.addSource(myKafkaConsumer)

  val startupLogDstream: DataStream[StartupLog] = dstream.map{ jsonString =>JSON.parseObject(jsonString,classOf[StartupLog]) }
  //告知watermark 和 eventTime如何提取
  val startupLogWithEventTimeDStream: DataStream[StartupLog] = startupLogDstream.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor[StartupLog](Time.seconds(0L)) {
    override def extractTimestamp(element: StartupLog): Long = {
      element.ts
    }
  }).setParallelism(1)

  //SparkSession
  val tableEnv: StreamTableEnvironment = TableEnvironment.getTableEnvironment(env)

  //把数据流转化成Table
  val startupTable: Table = tableEnv.fromDataStream(startupLogWithEventTimeDStream , 'mid,'uid,'appid,'area,'os,'ch,'logType,'vs,'logDate,'logHour,'logHourMinute,'ts.rowtime)

  //通过table api 进行操作
  // 每10秒 统计一次各个渠道的个数 table api 解决
  //1 groupby  2 要用 window   3 用eventtime来确定开窗时间
  val resultTable: Table = startupTable.window(Tumble over 10000.millis on 'ts as 'tt).groupBy('ch,'tt ).select( 'ch, 'ch.count)
 // 通过sql 进行操作

  val resultSQLTable : Table = tableEnv.sqlQuery( "select ch ,count(ch)   from "+startupTable+"  group by ch   ,Tumble(ts,interval '10' SECOND )")

  //把Table转化成数据流
  //val appstoreDStream: DataStream[(String, String, Long)] = appstoreTable.toAppendStream[(String,String,Long)]
  val resultDstream: DataStream[(Boolean, (String, Long))] = resultSQLTable.toRetractStream[(String,Long)]

  resultDstream.filter(_._1).print()

  env.execute()

}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值