本文由山东事业单位考试网提供,更多备考资料关注山东事业单位考试网获取哦
我们在各种考试中,经常碰到过桥问题,过桥问题是统筹类问题的一种,要考虑如何安排,才能更快更好的完成事件。但考试的时候往往没有那么多时间去分析,那有没有快速解决此类问题的方法呢?接下来我们一起来研究一下:
适用范围:过桥时只有一只手电筒,每次最多过两人。
例:夜晚,四个人带着一只手电筒过一座小桥,一次同时最多可以有两人一起过桥,而且必须持有手电筒。已知四个人过桥所需的时间分别是李明1分钟、陈红3分钟、张强5分钟、王亮12分钟,若两人过桥的速度以速度慢的人为准,他们最快能在多少分钟内过桥?
A.22 B.23 C.24 D.25
【答案】A
【中公解析】尽量让过桥时间相近的人在同一组过桥,同时尽量让过桥时间短的返回,送手电筒。另外,不仅过桥要速度快,返回送手电筒的人速度也要尽可能快,而且行走时间长的两人尽可能一起走,以免耽误时间。过桥的具体顺序如下:①李明(1分钟)和陈红(3分钟)先过桥,李明(1分钟)返回送手电筒;②张强(5分钟)和王亮(12分钟)一起过桥,陈红(3分钟)返回送手电筒;③李明(1分钟)和陈红(3分钟)再次过桥。此时四人均在桥对岸,目标完成。
综上所述,四个人过桥往返共5次,第一次过桥用时3分钟,返回用1分钟;第二次过桥用时12分钟,返回用时3分钟;最后过桥用时3分钟。共计1分钟一次、3分钟三次、12分钟一次,共计1+3×3+12=22分钟。选择A项。
小结:设过桥人数为N,过桥时间从多到少分别是a、b……m,那么过桥和返回总次数为(2N-3)次,所用时间为m次数一次,m-2次数一次,m-4次数一次……a次数为前文叙述其他次数总和,b次数为(2N-3)-2×a次数。
我们简单的再试一次:7人过桥,时间分别为1、2、6、9、11、16、18分钟。利用结论,过桥往返总次数等于2×9-3=15次,用时情况利用上面的结论很快可以得出如下表:
所以总用时为1×3+2×5+6+11+18=48分钟。
那么就有下一个问题出现了:我如何判断时间接近的是否一起过桥?
依据为:设过桥人数为N,过桥时间从少到多分别为a、b……m,那么决定是否一起过桥的临界点为2b-a,判定第R个人是否与邻近的人一起过桥,则需要判定:若2b-a≥XR,则这个人单独过桥;若2b-a≤XR,则这个人与第R+1个人一起过桥。
我们再拿一道题来感受一下:
例:过桥时间分别为甲1分钟、乙4分钟、丙5分钟、丁6分钟、戊10分钟、己12分钟、庚15分钟,则过桥的最短时间为多少?
A.50 B.51 C.52 D.53
【答案】C
【中公解析】具体情况采用两种方法解决:
方案一:分析。尽量让过桥时间相近的人在同一组过桥,同时尽量让过桥时间短的返回,送手电筒。另外,不仅过桥要速度快,返回送手电筒的人速度也要尽可能快,而且行走时间长的两人尽可能一起走,以免耽误时间。2b-a=2×4-1=7,所以丙(5分钟)、丁(6分钟)要各和甲(1分钟)走一次。过桥的具体顺序如下:①甲(1分钟)和乙(4分钟)一起过桥,甲(1分钟)返回;②己(12分钟)和庚(15分钟)一起过桥,乙(4分钟)返回;③甲(1分钟)和戊(10分钟)一起过桥,甲(1分钟)返回;④甲(1分钟)和丁(6分钟)一起过桥,甲(1分钟)返回;⑤甲(1分钟)和丙(5分钟)一起过桥,甲(1分钟)返回;⑥甲(1分钟)和乙(4分钟)一起过桥。此时四人均在桥对岸,目标完成。
1456101215
4次11-2×4=1次1次1次1次 1次
综上所述,七个人过桥往返共11次,第一次过桥用时4分钟,返回用1分钟;第二次过桥用时15分钟,返回用时4分钟;第三次过桥用时10分钟,返回用1分钟;第四次过桥用时6分钟,返回用1分钟;第五次过桥用时5分钟,返回用1分钟;最后过桥用时4分钟。共计1分钟四次、4分钟三次、5分钟一次、6分钟一次、10分钟一次、15分钟一次,共计1×4+4×3+5+6+10+15=52分钟。选择C项。
方案二:根据规律列表:
根据结论得:总体过桥时间为1×4+4×3+5+6+10+15=52分钟。选择C项。
显然,第二种方法用时较少,更适合应试。
根据刚才的例题和结论,同学们找到一些做题的感觉了吗?那就赶快找找身边有没有这类题目,练起来吧!