一、题目描述
原文链接:239. 滑动窗口最大值
具体描述:
给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。
返回 滑动窗口中的最大值 。
示例 1:
输入:nums = [1,3,-1,-3,5,3,6,7], k = 3
输出:[3,3,5,5,6,7]
解释:
滑动窗口的位置 最大值
[1 3 -1] -3 5 3 6 7 3
1 [3 -1 -3] 5 3 6 7 3
1 3 [-1 -3 5] 3 6 7 5
1 3 -1 [-3 5 3] 6 7 5
1 3 -1 -3 [5 3 6] 7 6
1 3 -1 -3 5 [3 6 7] 7
示例 2:
输入:nums = [1], k = 1
输出:[1]
提示:
- 1 <= nums.length <= 10^5
- -10^4 <= nums[i] <= 10^4
- 1 <= k <= nums.length
二、思路分析
乍一看,卧槽,这道题目是困难级别的,直接帕拉帕拉!
不要怂兄弟们,这道题做回了,可是AC了困难题,牛的很!
这道题怎么整那?
首先是需要一个双向队列的,并且需要维护一个单调递减的队列,这样的话,队列的头就是当前滑动窗口的最大值,放到结果集就行了!
那如果维护单调递减队列那?
其实维护单调递减队列也很简单,就是每次把值放到队列当中的时候,如果对尾的值小于要放的值,则弹出,否则直接添加!
为什么可以直接弹出那?
你想啊,如果要添加的值都比队尾的值大了,那只要是包含要添加值的窗口,小于它的元素都不可能成为结果!所以可以直接弹出!
三、AC代码
class Solution {
public int[] maxSlidingWindow(int[] nums, int k) {
if (nums.length <= 1) return nums;
// 定义结果
int[] results = new int[nums.length - k + 1];
// 双端队列,存储 下标
ArrayDeque<Integer> deque = new ArrayDeque<>();
for(int i = 0; i < nums.length; i++){
// i - k + 1的含义代表滑动窗口的起始索引
// k - 1 代表滑动窗口的结束位置
// 把起始位置之前的元素都全部弹出
while (!deque.isEmpty() && deque.peek() < i - k + 1){
deque.pollFirst();
}
// 维护单调递减队列
// 如果队列中最后一个索引对应的元素值小于num[i],则
while (!deque.isEmpty() && nums[deque.peekLast()] < nums[i]){
deque.pollLast();
}
// 添加元素
deque.offerLast(i);
// 取队列头部元素,i>k-1说明已经形成了窗口,可以取值了!
if (i >= k - 1){
results[i - k + 1] = nums[deque.peek()];
}
}
return results;
}
}
四、总结
- 单调递减的维护!
感谢大家的阅读,我是Alson_Code,一个喜欢把简单问题复杂化,把复杂问题简单化的程序猿! ❤