记录一些python和pytorch用法

  1. a = (1,3)[True]
    a
    3

    a = (1,3)[False]
    a
    1

    True 返回后者, False 返回前者

  2. for a, b in enumerate(torch.randn(4, 4), 2):
    print(a)
    print(b)

    2
    tensor([ 0.5245, 0.5983, -0.4501, 0.6317])
    3
    tensor([ 0.8469, 0.6904, 0.7923, -0.1515])
    4
    tensor([-1.0094, -0.5022, -0.1177, 0.4782])
    5
    tensor([ 0.1024, 0.4733, -0.8040, 0.5486])

    遍历,a拿到后面的数字,b拿到前面的tensor

  3. a = 0 or 1
    a
    1

    a = 2 or 1
    a
    2

    等号右边第一个数为真则直接输出,为假则输出后者

  4. from itertools import product as product
    for a, b in product(range(10), repeat=2):
    print(a, b)

    0 0
    0 1
    0 2
    0 3
    0 4
    0 5
    0 6
    0 7
    0 8
    0 9
    1 0
    1 1
    1 2
    1 3
    1 4
    1 5
    1 6

    9 9

  5. import torch
    import torch.nn as nn

    w = torch.empty(3, 5)
    nn.init.constant_(w, 0.3)

    tensor([[0.3000, 0.3000, 0.3000, 0.3000, 0.3000],
    [0.3000, 0.3000, 0.3000, 0.3000, 0.3000],
    [0.3000, 0.3000, 0.3000, 0.3000, 0.3000]])

  6. cudnn.benchmark
    (1)如果网络的输入数据维度或类型上变化不大,设置 torch.backends.cudnn.benchmark = true 可以增加运行效 率;
    (2)如果网络的输入数据在每次 iteration 都变化的话,会 导致 cnDNN 每次都会去寻找一遍最优配置,这样反而会降低运行效率。
    本条参考https://www.pytorchtutorial.com/when-should-we-set-cudnn-benchmark-to-true/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值